Get access
Journal of Geophysical Research: Atmospheres

Nonlinear coupling between quasi 2 day wave and tides based on meteor radar observations at Maui

Authors

  • Kai Ming Huang,

    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    Search for more papers by this author
  • Alan Z. Liu,

    1. Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA
    Search for more papers by this author
  • Xian Lu,

    1. Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA
    Search for more papers by this author
  • Zhenhua Li,

    1. Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA
    Search for more papers by this author
  • Quan Gan,

    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    Search for more papers by this author
  • Yun Gong,

    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    Search for more papers by this author
  • Chun Ming Huang,

    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    Search for more papers by this author
  • Fan Yi,

    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    Search for more papers by this author
  • Shao Dong Zhang

    Corresponding author
    1. School of Electronic Information, Wuhan University, Wuhan, China
    2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
    3. State Observatory for Atmospheric Remote Sensing, Wuhan, China
    • Corresponding author: S. D. Zhang, School of Electronic Information, Wuhan University, Wuhan, 430079, China. (zsd@whu.edu.cn)

    Search for more papers by this author

Abstract

[1] An observational study of nonlinear interaction between the quasi 2 day wave (QTDW) and the diurnal and semidiurnal tides from meteor radar measurements at Maui is reported. The diurnal and semidiurnal tides show a short-term variation with the QTDW activity. The variation of amplitude of the semidiurnal tide is opposite to that of the QTDW. The minimum amplitudes of the diurnal tide appear several days later than the maximum amplitudes of the QTDW, and the diurnal tide obviously strengthens when the QTDW drops to small amplitudes. The bispectrum analysis shows significant nonlinear interactions among the QDTW and the tidal components. The two quasi 16 h modes with periods of 16.2 h and 15.8 h generated in the interactions of the QTDW with the diurnal and semidiurnal tides can clearly be distinguished because of the slight deviation of the QTDW period from 48 h. The bicoherence spectrum demonstrates that the QTDW and the semidiurnal tide have quite strong levels of coherence, indicating that the nonlinear interaction is a mechanism responsible for the variability of the semidiurnal tide. Although there is also some interaction between the QTDW and the diurnal tide, their coherence level is low. When the QTDW drops to very weak amplitudes, the background wind decreases and reverses. During this time, the diurnal tide holds large amplitudes. These results support the notion that the variability of the diurnal tide is mainly attributable to the strong QTDW-induced changes in the background atmosphere, which was shown in the modeling study by Chang et al. (2011). Hence, both the nonlinear interaction and the background flow changes are responsible for the observed variation of the diurnal tide.

Get access to the full text of this article

Ancillary