SEARCH

SEARCH BY CITATION

References

  • Ackermann, S., B. Lazic, T. Armbruster, S. Doyle, K-D. Grevel, and J. Majzlan (2009), Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3● ~ 7.75H2O] and paracoquimbite [Fe2(SO4)3●9H2O], Amer. Mineral., 94, 1620-1628, doi:10.2138/am.2009.3179.
  • Africano, F., and A. Bernard (2000), Acid alteration in the fumaroles environment of the Usu volcano, Hokkaido, Japan, J. Volcan. Geotherm. Res., 97, 475-495.
  • Alpers, C. N., R. O. Rye, D. K. Nordstrom, L. D. White, and B-S. King (1992), Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lake, Chem. Geol. 96, 203-226.
  • Armstrong, J. T. (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles, Microbeam Anal., 4,177200.
  • Arvidson, R. E., et al. (2005), Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars, Science, 307, doi:10.1126/science.1109509.
  • Banin, A., F. X. Han, I. Kan, and A. Cicelsky (1997), Acidic volatiles and the Mars soil, J. Geophys. Res., 102, 13,341-13,356.
  • Barany, R., and L. H. Adami (1965a), Heats of formation of anhydrous ferric sulfate and indium sulfate, U. S. Bur. Mines Rep. Inv., 6687, 8 p.
  • Baron, D., and C. D. Palmer (1996), Solubility of jarosite at 4–35°C, Geochim. Cosmochim. Acta, 60, 185-195.
  • Berger, G., M. J. Toplis, E. Treguier, C. D'Uston, and P. Pinet (2009), Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars, Amer. Mineral., 94, 12791282.
  • Bethke, C. M. (2008), Geochemical and Biogeochemical Reaction Modeling, Cambridge University Press, 543 pp.
  • Bibring, J.-P., et al. (2005), Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307, doi:10.1126/science.1109509.
  • Bibring, J.-P., et al. (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400-404.
  • Bishop, J. L., M. Parente, C. M. Weitz, E. Z. Noe Dobrea, L. H. Roach, S. L. Murchie, P. C. McGuire, N. K. McKeown, C. M. Rossi, A. J. Brown, W. M. Calvin. R. Milliken, and J. F. Mustard (2009), Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau, Mars, J. Geophys. Res., 110, doi:10.1029/2009JE003352.
  • Brand, R. A. (1987), Improving the validity of hyperfine field distributions from metallic alloys. Part I: Unpolarized source, Nuclear Inst. Meth. Phys. Res. B, 28, 398-405.
  • Brantley, S. L. (2008), Kinetics of mineral dissolution, in Kinetics of Water-Rock Interaction, edited by S. L. Brantley, J. D. Kubicki, and A. F. White, pp. 151-210, Springer, New York.
  • Brophy, G. P., and M. F. Sheridan (1965), Sulfate studies V: The jarosite-natrojarosite-hydronium jarosite solid solution series, Am. Mineral., 50, 15951607.
  • Brophy, G. P., E. S. Scott, and R. A. Snellgrove (1962), Sulfate studies II: Solid solution between alunite and jarosite, Am. Mineral., 47, 112-126.
  • Brown, J. B. (1971), Jarosite-goethite stabilities at 25°C, 1 ATM, Mineral. Deposita, 6, 245-252.
  • Burns, R. G. (1987), Ferric sulfates on Mars, J. Geophys. Res., 92, E570-E574.
  • Casey, W. H., H. R. Westrich, T. Massis, J. F. Banfield, and G. W. Arnold (1989), The surface of labradorite feldspar after hydrolysis, Chem. Geol., 78, 205218.
  • Catling, D. C., and J. Moore (2003), The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars, Icarus, 165, 277-300.
  • Clark, B. C., et al. (2005), Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett., 240, 73-94.
  • Dehouck, E., V. Chevrier, A. Gaudin, N. Mangold, P.-E. Mathé, and P. Rochette (2012), Evaluating the role of sulfide-weathering in the formation of sulfates and carbonates on Mars, Geochim. Cosmochim. Acta, 90, 47-63.
  • DeKock, C.W. (1982), Thermodynamic properties of selected transition metal sulphates and their hydrates, U.S. Bur. Mines Inf. Circ. 9081, 45 p.
  • Desborough, G. A., K. A. Smith, H. A. Lowers, G. A. Swayze, J. M. Hammarstrom, S. F. Diehl, R. W. Leinz, and R. L. Driscoll (2010), Mineralogical and chemical characteristics of some natural jarosites, Geochim. Cosmochim. Acta, 74, 1041-1056.
  • Deyell, C. L., and G. M. Dipple (2005), Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio-Pascua belt of Chile and Argentina, Chem. Geol., 215, 219-234.
  • Deyell, C. L., R. O. Rye, G. P. Landis, and T. Bissig (2005), Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile, Chem. Geol., 215, 185-218.
  • Drouet, C., and A. Navrotsky (2003), Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites, Geochim. Cosmochim. Acta, 67, 2063-2076 doi:10.1016/S0016-7037(02)01299-1.
  • Dutrizac, J. E., and J. L. Jambor (2000), Jarosites and their application in hydrometallurgy, in Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Rev. Mineral. Geochem, edited by C. N. Alpers, et al., pp. 405452, Mineral. Soc. of Am., Washington, D. C.
  • Elwood Madden, M. E., R. J. Bodnar, and J. D. Rimstidt (2004), Jarosite as an indicator of water-limited chemical weathering on Mars, Nature, 431, 821-823.
  • Elwood Madden, M. E., A. S. Madden, and J. D. Rimstidt (2009), How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis, Geology, 37, 635-638.
  • Elwood Madden, A. S., J. D. Rimstidt, S. Zahrai, M. R. Kendall, and M. A. Miller (2012), Jarosite dissolution rates and nanoscale mineralogy, Geochim. Cosmochim. Acta, 91, 306-312.
  • Forray, F. L., C. Drouet, and A. Navrotsky (2005), Thermochemistry of yavapaiite KFe(SO4)2: Formation and decomposition, Geochim. Cosmochim. Acta, 69, 2133-2140.
  • Gendrin, A., et al. (2005), Sulfates in Martian layered terrains: The OMEGA/Mars Express view, Science, 307, doi:10.1126/science.1109087.
  • Golden, D. C., D. W. Ming, R. V. Morris, and S. A. Mertzman (2005), Laboratory-simulated acid-sulfate weathering of basaltic materials: Implications for formation of sulfates at Meridiani Planum and Gusev crater, Mars, J. Geophys. Res., 110, doi:10.1029/2005JE002451.
  • Golden, D. C., D. W. Ming, R. V. Morris, and T. G. Graff (2008), Hydrothermal synthesis of hematite spherules and jarosite: Implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars, Am. Mineral., 93, 12011214.
  • Graeber, E. J., and A. Rozensweig (1971), The crystal structure of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2•4H2O, Am. Mineral., 56, 1917-1933.
  • Grevel, K.-D., and J. Majzlan (2009), Internally consistent thermodynamic data for magnesium sulfate hydrates, Geochim. Cosmochim. Acta, 73, 6805-6815.
  • Härtig, C., P. Brand, and K. Bohmhammel (1984), Fe-Al-Isomorphie und Strukturwasser in Kristallen vom Jarostie-Alunit-Typ, Z. Anorg. Allg. Chem., 508, 159-164.
  • Hawthorne, J. C., S. V. Krivovichev, and P. C. Burns (2000) The crystal chemistry of sulfate minerals, in Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Rev. Mineral. Geochem, edited by C. N. Alpers, et al., pp. 1-112, Mineral. Soc. Of Am., Washington, D. C.
  • Hausrath, E. M., A. K. Navarre-Sitchler, P. B. Sak, C. I. Steefel, and S. L. Brantley (2008), Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars, Geology, 36, 67-70.
  • Helgeson, H. C., J. M. Delany, H. W. Nesbitt, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Amer. J. Sci., 278-A, 1-229.
  • Hemingway, B. S., R. R. Seal, II, and I-M. Chou (2002), Thermodynamic data for modeling acid mine drainage problems: Compilation and estimation of data for selected soluble iron-sulfate minerals, U.S. Geol Survey, Open-File Report, 02-161, 13 pp.
  • Hladky, G., and G. Slansky (1981), Stability of alunite minerals in aqueous solutions at normal temperature and pressure, Bull. Mineral., 104, 468-477.
  • Hurowitz, J. A., S. M. McLennan, D. H. Lindsley, and M. A. A. Schoonen (2005), Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars, J. Geophys. Res., 110, doi:10.1029/2004JE002391.
  • Hynek, B. M., T. M. McCollom, and K. L. Rogers (2011), Cerro Negro Volcano, Nicaragua: An assessment of geological and potential biological systems on early Mars, Geol. Soc. Amer. Spec. Paper, 483, 287300.
  • Jackson, M., and P. Solheid (2010), On the quantitative analysis and evaluation of magnetic hysteresis data, Geochem. Geophys. Geosys., 11, doi:10.1029/2009GC002932.
  • Jamieson, H. E., C. Robinson, C. N. Alpers, D. K. Nordstrom, A. Poustovetov, and H. A. Lowers (2005), The compostion of coexisting jarosite-group minerals and water from the Richmond Mine, Iron Mountain, California, Can. Mineral., 12251242.
  • Juliani, C., R. O Rye, C. M.D. Nunes, L. W. Snee, R. H. Correa Silva, L. V. S. Monteiro, J. S. Bettencourt, R. Neumann, and A. Alcover Neto (2005), Paleoproterozoic high-sulfidation mineralization in the Tapajόs gold province, Amazonian Craton, Brazil: Geology, mineralogy, alunite argon age, and stable-isotope constraints, Chem. Geol., 215, 95-125.
  • Kashkay, C. M., T. B. Borovskaya, and M. A. Babazade (1975), Determination of ΔGf,298 of synthetic jarosite and its sulfate analogues, Geokhimyia, 7(77), l783.
  • Kelley, K. K., C. H. Shomate, F. F. Young, B. F. Naylor, A. E. Salo, and E. H. Juffman (1946), Thermodynamic properties of ammonium and potassium alums and related substances with reference to extraction of alumina from clay and alunite, U. S. Bur. Mines Tech. Paper 688, 104 p.
  • Kelley, K. K. (1960), Contributions to the data on theoretical metallurgy: XIII. High temperature heat content, heat capacity and entropy data for the elements and inorganic compounds, US Bur Mines Bull, 584, 232.
  • Klingelhöfer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science, 306, 1740-1745.
  • Knauth, L. P., D. M. Burt, and K. H. Wohletz (2005), Impact origin of sediments at the Opportunity landing site on Mars, Nature, 438, 1123-1128.
  • Koeppen, W. C., and V. E. Hamilton (2008), Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data, J. Geophys. Res., 113, doi:10.1029/2007JE002984.
  • La Femina, P. C., C. B. Connor, B. E. Hill, W. Strauch, and J. A. Saballos (2004), Magma-tectonic interactions in Nicaragua: The 1999 seismic swarm and eruption of Cerro Negro volcano, J. Volcan. Geotherm. Res., 137, 187-199.
  • Larson, J. W., P. Cerutti, H. K. Garber, and L. G. Hepler (1968), Electrode potentials and thermodynamic data for aqueous ions. Copper, zinc, cadmium, iron, cobalt, and nickel, J. Phys. Chem., 72, 29022907.
  • Lattard, D., R. Engelmann, A. Kontny, and U. Sauerzapf (2006), Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods, J. Geophys. Res., 111, B12S28, doi:10.1029/2006JB004591.
  • Lyon, D.N., and W. F. Giauque (1949), Magnetism and the third law of thermodynamics. Magnetic properties of ferrous sulfate heptahydrate from 1 to 20°K. Heat capacity from 1 to 310°K, J. Am. Chem. Soc., 71, 16471657
  • Lodders, K. (1998), A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions, Meteor. Planet. Sci., 33, A183-190.
  • Majzlan, J., R. Stevens, J. Boerio-Goates, B. F. Woodfield, A. Navrotsky, P. C. Burns, M. K. Crawford, and T. G. Amos (2004a), Thermodnamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6, Phys. Chem. Minerals, 31, 518-531.
  • Majzlan, J., A. Navrotsky, and U. Schwertmann (2004b), Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε-Fe2O3, Geochim. Cosmochim. Acta, 68, 1049-1059, doi:10.1016/S0016-7037(03)00371-5.
  • Majzlan, J., A. Navrotsky, R. B. McCleskey, and C. N. Alpers (2006), Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5, Euro. J. Mineral., 18, 175-186, doi:10.1127/0935-1221/2006/0018-0175.
  • McAdam, A. C., M. Y. Zolotov, M. V. Mironenko, and T. G. Sharp (2008), Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints, J. Geophys. Res., 113, doi:10.1029/2007JE003056.
  • McCollom, T. M., and B. M. Hynek (2005), A volcanic environment for bedrock diagenesis at Meridiani Planum, Mars, Nature, 438, 1129-1131.
  • McCollom, T. M., and B. M. Hynek (2006), Planetary Science: Bedrock formation at Meridiani Planum (Reply), Nature, 443, doi:10.1038/nature05213.
  • McCollom, T. M., B. Moskowitz, T. Berquό, and B. M. Hynek (2012), Acid-sulfate alteration of basalt in fumarolic environments on Earth and Mars, paper presented at 43rd Lunar and Planetary Science Conference, Houston, TX.
  • McLennan S. M., J. F. Bell, III, W. M. Calvin, et al., (2005), Provenance and diagenesis of the evaporiate-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett., 240, 95-121.
  • McSween, H. Y., Jr., D. D. Eisenhour, L. A. Taylor, M. Wadhwa, and G. Crozaz (1996), QUE94201 shergottite: Crystallization of a Martian basaltic magma, Geochim. Cosmochim. Acta, 22, 4563-4569.
  • McSween, H. Y. et al. (2006), Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res., 111, doi:10.1029/2005JE002477.
  • McSween, H. Y. et al. (2008), Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mossbauer, Alpha Particle E-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra, J. Geophys. Res., 113, doi:10.1029/2007JE002970.
  • Milliken, R. E., G. A. Swayze, R. E. Arvidson, J. L. Bishop, R. N. Clark, B. L. Ehlmann, R. O. Green, J. P. Grotzinger, R. V. Morris, S. L. Murchie, J. F. Mustard, and C. Weitz (2008), Opaline silica in young deposits on Mars, Geology, 36, 847-850.
  • Morris, R.V., D. W. Ming, D. C. Golden, and J. F. Bell, III (1996), An occurrence of jarositic tephra on Mauna Kea, Hawaii: Implications for the ferric mineralogy of the Martian surface, in Mineral Spectroscopy: A Tribute to Roger G. Burns, edited by M. D. Dyar, C. McCammon, and M. W. Schaefer, pp. 327-336, Geochemical Soc., Houston, TX.
  • Morris, R.V., et al. (2005), Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars, Earth Planet, Sci. Lett., 240, 168-178.
  • Morris, R.V., et al. (2006), Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, doi:10.1029/2006JE002791.
  • Morris, R.V., et al. (2008), Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Exploration Rover, J. Geophys. Res., 113, doi:10.1029/2008JE003201.
  • Murchie, S. et al. (2007), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res., 112, doi:10.1029/2006JE002682.
  • Niles, P. B., and J. Michalski (2009), Meridiani Planum sediments on Mars formed through weathering in massive ice deposits, Nat. Geosci., 2, 215-220.
  • Oelkers, E. H., and S. R. Gislason (2001), The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11, Geochim. Cosmochim. Acta, 65, 3671-3681.
  • Pankratz, L. B., and W. W. Weller (1969), Thermodynamic Data for Ferric Sulphate and Indium Sulphate, U. S. Bureau Mines, 8 p.
  • Papike, J. J. (1992), The Valley of Ten Thousand Smokes, Katmai, Alaska: A unique geochemistry laboratory, Geochim. Cosmochim. Acta, 56, 1429-1449.
  • Papike, J. J., J. M. Karner, M. N. Spilde, and C. K. Shearer (2006a), Terrestrial analogs of Martian sulfates: Major and minor element systematics of alunite–jarosite from Goldfield, Nevada, Am. Mineral. 91, 1197-1200.
  • Papike, J. J., J. M. Karner, and C. K. Shearer (2006b), Comparative planetary mineralogy: Implications of Martian and terrestrial jarosite. A crystal chemical perspective, Geochim. Cosmochim. Acta, 70, 1309-1321.
  • Papike, J. J., P. V. Burger, J. M. Karner, C. K. Shearer, and V. W. Lueth (2007), Terrestrial analogs of Martian sulfates: Major, minor element systematic and Na-K zoning in selected samples, Am. Mineral., 92, 444-447.
  • Papike, J. J., J. M. Karner, C. K. Shearer, and P. V. Burger (2009), Silicate mineralogy of Martian meteorites, Geochim. Cosmochim. Acta, 73, 7443-7485.
  • Parker, V. B., and I. L. Khodakovskii (1995), Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron, J. Chem. Phys. Ref. Data, 24, 16991745.
  • Ripmeester, J. A., C. I. Ratcliffe, J. E. Dutrizac, and J. L. Jambor (1986), Hydronium ion in the alunite-jarosite group, Can. Mineral., 24, 435-447.
  • Rowe, G. L., Jr., and S. L. Brantley (1993), Estimation of the dissolution rates of andesitic glass, plagioclase and pyroxene in a flank aquifer of Poás Volcano, Costa Rica, Chem. Geol., 105, 71-87.
  • Schiffman, P., R. Zierenberg, N. Marks, J. L. Bishop, and M. D. Dyar (2006), Acid-fog deposition at Kilauea volcano: A possible mechanism for formation of siliceous-sulfate rock coatings on Mars, Geology, 34, 921-924.
  • Schmidt, M. E. et al. (2009), Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater Mars indicate high and low temperature alteration, Earth Planet. Sci. Lett., 281, 258-266.
  • Scott, K. M. (1987), Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia, Am. Mineral., 72, 178-187.
  • Spilde, M. N., A. J. Brearley, and J. J. Papike (1993), Alteration of plagioclase and pyroxene phenocrysts in a fissure fumarole, Valley of Ten Thousand Smokes, Alaska, Am. Mineral., 78, 1066-1081.
  • Squyres, S. W. et al. (2004), In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science, 306, 1709-1714.
  • Squyres, S. W., and A. H. Knoll (2005), Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett., 240, 1-10.
  • Squyres, S. W., et al. (2007), Pyroclastic activity at Home Plate in Gusev Crater, Mars, Science, 316, 738742.
  • Stoffregen, R. E. (1993), Stability relations of jarosite and natrojarosite at 150–250°C, Geochim. Cosmochim. Acta, 57, 2417-2429.
  • Stoffregen, R. E., and C. N. Alpers (1987), Woodhouseite and svanbergite in hydrothermal ore-deposits – products of apatite desctruction during advanced argillic alteration, Can. Mineral., 25, 201211.
  • Stoffregen, R. E., and G. L. Cygan (1990), An experimental study of Na-K exchange between alunite and aqueous sulphate solutions, Am. Mineral., 75, 209-220.
  • Stoffregen, R. E., and C. N. Alpers (1992), Observations on the unit-cell dimensions, H2O contents, and δD values of natural and synthetic alunite, Am. Mineral., 77, 1092-1098.
  • Stoffregen, R. E., C. N. Alpers, and J. L. Jambor (2000), Alunite-jarosite crystallography, thermodynamics, and geochronology, in Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Rev. Mineral. Geochem, edited by C. N. Alpers et al., pp. 453-479, Mineral. Soc. Amer., Washington, D. C.
  • Taghipour, B., M. A. Mackizadeh, A. Kasson, and A. D. Huertas (2010), Mineralogical and geochemical studies of acid-sulfate alteration in the Shahrzad area, east of Esfahan, Central Iran, N. Jb. Geol. Paläont. Abh., 256, 129139.
  • Tagirov, B., and J. Schott (2001), Aluminum speciation in crustal fluids revisited, Geochim. Cosmochim. Acta, 65, 3965-3992.
  • Tosca, N. J., S. M. McLennan, D. H. Lindsley, and M. A. A. Schoonen (2004), Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited, J. Geophys. Res., 109, doi:10.1029/2003JE002218.
  • Tosca, N. J., A. H. Knoll, and S. M. McLennan (2005), Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum, Earth Planet. Sci. Lett., 240, 122-148.
  • Tosca, N. J., A. H. Knoll, and S. M. McLennan (2008a), Water activity and the challenge for life on early Mars, Science, 320, 1204-1207.
  • Tosca, N. J., S. M. McLennan, M. D. Dyar, E. C. Sklute, and F. M. Michel (2008b), Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars, J. Geophys. Res., 113, doi:10.1029/2007JE003019.
  • Tréguier, E., et al. (2008), Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration, J. Geophys. Res., 113, doi:10.1029/2007JE003010.
  • Vasconcelos, P. M., G. H. Brimhall, T. A. Becker, and P. R. Renne (2004), 40Ar/39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and West Africa, Geochim. Cosmochim. Acta, 58, 401-420.
  • Wang, A., et al. (2006), Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res., 111, doi:10.1029/2005JE002513.
  • Wolery, T. J., and R. L. Jarek (2003), Software user's manual: EQ3/6, Version 8.0, Lawrence Livermore National Laboratory, Livermore, Calif.
  • Wolery, T. J., and C. F. Jove-Colon (2004), Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems, U.S. Department of Energy, Las Vegas, Nevada.
  • Wolff-Boenisch D., S. R. Gislason, E. H. Oelkers, and C. V. Putnis (2004), The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 35 to 74°C, Geochim. Cosmochim. Acta, 68, 4843-4858.
  • Zimbelman, D. R., R. O. Rye, and G. N. Breit (2005), Origin of secondary sulfate minerals on active andesitic stratovolcanoes, Chem. Geol., 215, 37-60.
  • Zolotov, M. Y., and E. L. Shock (2005), Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett., 32, doi:10.1029/2005GL024253.
  • Zolotov, M. Y., and M. V. Mironenko (2007), Timing of acid weathering on Mars: A kinetic-thermodynamic assessment, J. Geophys. Res., 112, doi:10.1029/2006JE002882.