Distribution of Early, Middle, and Late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes

Authors

  • Rossman P. Irwin III,

    Corresponding author
    1. Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D.C., USA
    • Corresponding author: R. P. Irwin III, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. at Independence Ave. SW, Washington, D.C. 20013, USA. (irwinr@si.edu)

    Search for more papers by this author
  • Kenneth L. Tanaka,

    1. U. S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA
    Search for more papers by this author
  • Stuart J. Robbins

    1. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
    Search for more papers by this author

Abstract

[1] Most of the geomorphic changes on Mars occurred during the Noachian Period, when the rates of impact crater degradation and valley network incision were highest. Fluvial erosion around the Noachian/Hesperian transition is better constrained than the longer-term landscape evolution throughout the Noachian Period, when the highland intercrater geomorphic surfaces developed. We interpret highland resurfacing events and processes using a new global geologic map of Mars (at 1:20,000,000 scale), a crater data set that is complete down to 1 km in diameter, and Mars Orbiter Laser Altimeter topography. The Early Noachian highland (eNh) unit is nearly saturated with craters of 32–128 km diameter, the Middle Noachian highland (mNh) unit has a resurfacing age of ~4 Ga, and the Late Noachian highland unit (lNh) includes younger composite surfaces of basin fill and partially buried cratered terrain. These units have statistically distinct ages, and their distribution varies with elevation. The eNh unit is concentrated in the high-standing Hellas basin annulus and in highland terrain that was thinly mantled by basin ejecta near 180° longitude. The mNh unit includes most of Arabia Terra, the Argyre vicinity, highland plateau areas between eNh outcrops, and the Thaumasia range. The lNh unit mostly occurs within highland basins. Crater depth/diameter ratios do not vary strongly between the eNh and mNh units, although crater losses to Noachian resurfacing appear greater in lower lying areas. Noachian resurfacing was spatially non-uniform, long-lived, and gravity-driven, more consistent with arid-zone fluvial and aeolian erosion and volcanism than with air fall mantling or mass wasting.

Ancillary