SEARCH

SEARCH BY CITATION

References

  • Agee, C. B., and D. S. Draper (2004), Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle, Earth Planet. Sci. Lett., 224, 415429.
  • Agnor, C. B., R. M. Canup, and H. F. Levison (1999), On the character and consequences of large impacts in the late stage of terrestrial planet formation, Icarus, 142, 219237.
  • Anand, M., S. James, R. C. Greenwood, D. Johnson, I. A. Franchi, and M. M. Grady (2008), Mineralogy and geochemistry of shergottite RBT 04262, Proc. Lunar Planet. Sci. Conf. [CD-ROM], 39, abstract 2173.
  • Bogard, D. D., R. N. Clayton, K. Marti, T. Owen, and G. Turner (2001), Martian volatiles: Isotopic composition, origin, and evolution, in Chronology and Evolution of Mars, edited by R. Kallenbach, J. Geiss, and W. K. Hartmann, pp. 425458, Kluwer Acad., Dordrecht, Netherlands.
  • Borg, L. E., and D. S. Draper (2003), A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites, Meteorit. Planet. Sci., 38, 17131731.
  • Borg, L. E., L. E. Nyquist, H. Wiesmann, C.-Y. Shih, and Y. Reese (2003), The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta, 67, 35193536.
  • Brandon, A. D., R. J. Walker, J. W. Morgan, and G. G. Goles (2000), Re-Os isotopic evidence for early differentiation of the Martian mantle, Geochim. Cosmochim. Acta, 64, 40834095.
  • Brandon, A. D., I. S. Puchtel, R. J. Walker, J. M. D. Day, A. J. Irving, and L. A. Taylor (2012), Evolution of the Martian mantle inferred from 187Re-187Os isotope and highly siderophile element abundance systematics of shergottite meteorites, Geochim. Cosmochim. Acta, 76, 206235.
  • Chabot, N. L., and C. B. Agee (2003), Core formation in the Earth and Moon: New experimental constraints from V, Cr, and Mn, Geochim. Cosmochim. Acta, 67, 20772091.
  • Chambers, J. E., and G. W. Wetherill (1998), Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions, Icarus, 136, 304327.
  • Corgne, A., S. Keshav, B. J. Wood, W. F. McDonough, and Y. Fei (2008), Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion, Geochim. Cosmochim. Acta, 72, 574589.
  • Cottrell, E., M. J. Walter, and D. Walker (2009), Metal-silicate partitioning of tungsten at high pressure and temperature: Implications for equilibrium core formation in Earth, Earth Planet. Sci. Lett., 281, 275287.
  • Dale, C. W., K. W. Burton, R. C. Greenwood, A. Gannoun, J. Wade, B. J. Wood, and G. Pearson (2012), Late accretion on the earliest planetesimals revealed by the highly siderophile elements, Science, 336, 7275.
  • Debaille, V., A. D. Brandon, Q. Z. Yin, and B. Jacobsen (2007), Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars, Nature, 450, 525528.
  • Dauphas, N., and A. Pourmand (2011), Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, 473(7348), 489492.
  • Dreibus, G., and H. Wänke (1985), Mars: A volatile rich planet, Meteoritics, 20, 367382.
  • Elkins-Tanton, L. T. (2008), Linked magma ocean solidification and atmospheric growth for Earth and Mars, Earth Planet. Sci. Lett., 271, 181191.
  • Elkins-Tanton, L. T., P. C. Hess, and E. M. Parmentier (2005a), Possible formation of ancient crust on Mars through a magma ocean processes, J. Geophys. Res., 110, E12S01, doi:10.1029/2005JE002480.
  • Elkins-Tanton, L. T., S. E. Zaranek, E. M. Parmentier, and P. C. Hess (2005b), Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn, Earth Planet. Sci. Lett., 236, 112.
  • Ertel, W., H. St, C. O'Neill, P. J. Sylvester, and D. B. Dingwell (1999), Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300 0C, Geochim. Cosmochim. Acta, 63, 24392449.
  • Folco, L., I. A. Franchi, M. D'Orazio, S. Rocchi, and L. Schultz (2000), A new Martian meteorite from the Sahara: The shergottite Dar al Gani 489, Meteorit. Planet. Sci., 35, 827839.
  • Foley, C. N., M. Wadwha, L. E. Borg, P. E. Janney, R. Hines, and T. L. Grove (2005), The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites, Geochim. Cosmochim. Acta, 69, 45574571.
  • Frost, D. J., U. Mann, Y. Asahara, and D. C. Rubie (2008), The redox state of the mantle during and just after core formation, Philos. Trans. R. Soc. London Ser. A, 366, 43154337.
  • Gaetani, G. L., and T. L. Grove (1997), Partitioning of moderately siderophile elements among olivine, silicate melt and sulfide melt: Constraints on core formation in the Earth and Mars, Geochim. Cosmochim. Acta, 69, 18291846.
  • Halliday, A. N., H. Wänke, J.-L. Birck, and R. N. Clayton (2001), Accretion, composition and early differentiation of Mars, Space Sci. Rev., 96, 197230.
  • Hirschmann, M. M., and A. C. Withers (2008), Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse, Earth Planet. Sci. Lett., 270, 147155.
  • Jana, D., and D. Walker (1997), The impact of carbon on element distribution during core formation, Geochim. Cosmochim. Acta, 61, 27592763.
  • Jones, J. H. (2003), Constraints on the structure of the Martian interior determined from the chemical and isotopic systematics of SNC meteorites, Meteorit. Planet. Sci., 38, 18071814.
  • Kegler, P., A. Holzheid, D. J. Frost, D. C. Rubie, R. Dohmen, and H. Palme (2008), New Ni and Co metal-silicate partitioning data and their relevance for an early terrestrial magma ocean, Earth Planet. Sci. Lett., 268, 2840.
  • Kleine, T., C. Münker, K. Mezger, and H. Palme (2002), Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry, Nature, 418, 952955.
  • Kleine, T., K. Mezger, C. Münker, H. Palme, and A. Bischoff (2004), 182Hf-182W isotope systematics of chondrites, eucrites, and Martian meteorites: Chronology of core formation and mantle differentiation in Vesta and Mars, Geochim. Cosmochim. Acta, 68, 29352946.
  • Kleine, T., M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S. B. Jacobsen, Q. Z. Yin, and A. N. Halliday (2009), Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets, Geochim. Cosmochim. Acta, 73, 51505188.
  • Kong, P., M. Ebihara, and H. Palme (1999), Siderophile elements in Martian meteorites and implications for core formation in Mars, Geochim. Cosmochim. Acta, 63, 18651875.
  • Li, J., and C. B. Agee (1996), Geochemistry of mantle-core differentiation at high pressure, Nature, 381, 686689.
  • Lodders, K., and B. Jr. Fegley (1997), An oxygen isotope model for the composition of Mars, Icarus, 126, 373394.
  • Longhi, J., E. Knittle, J. R. Holloway, and H. Wänke (1992), The bulk composition, mineralogy, and internal structure of Mars, in Mars, edited by H. H. Kieffer et al., pp. 184208, Univ. of Ariz. Press, Tucson.
  • Mann, U., D. J. Frost, and D. C. Rubie (2009), Evidence for high pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly-siderophile elements, Geochim. Cosmochim. Acta, 73, 73607386.
  • Mann, U., D. J. Frost, D. C. Rubie, H. Becker, and A. Audétat (2012), Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and temperatures—Implications for the origin of highly siderophile element concentrations in the Earth's mantle, Geochim. Cosmochim. Acta, 84, 593613.
  • McSween, H. Y. (1994), What we have learned about Mars from SNC meteorites, Meteoritics, 29, 757779.
  • McSween, H. Y. (2002), The rocks of Mars, from far and near, Meteorit. Planet. Sci., 37, 725.
  • McSween, H. Y., and A. H. Treiman (1998), Martian meteorites, in Planetary Materials, edited by J. J. Papike, pp. 6–16–53, Mineral. Soc. of Am., Washington, D. C.
  • Misawa, K., K. Yamada, N. Nakamura, N. Morikawa, K. Yamashita, and W. Premo (2006), Sm-Nd isotopic systematics of ultramafic shergottite Yamato-793605, Antarct. Meteorit. Res., 19, 4557.
  • Mysen, B. O., D. Virgo, and F. A. Seifert (1982), The structure of silicate melts: Implications for chemical and physical properties of natural magma, Rev. Geophys. Space Phys., 20, 353383.
  • Nier, A., and M. B. McElroy (1977), Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers at Viking 1 and 2, J. Geophys. Res., 82, 43414350.
  • Nimmo, F., and T. Kleine (2007), How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation, Icarus, 191, 497504.
  • Nyquist, L. E., D. D. Bogard, C.-Y. Shih, A. Greshake, D. Stoffler, and E. Eugster (2001), Ages and geologic histories of Martian meteorites, Space Sci. Rev., 96, 105164.
  • Nyquist, L. E., D. D. Bogard, C.-Y. Shih, J. Park, Y. D. Reese, and A. J. Irving (2009), Concordant Rb-Sr, Sm-Nd, and Ar-Ar ages for Northwest Africa 1460: A 346 Ma old basaltic shergottite related to “ultramafic” shergottites, Geochim. Cosmochim. Acta, 73, 42884309.
  • O'Brien, D. P., A. Morbidelli, and H. F. Levison (2006), Terrestrial planet formation with strong dynamical friction, Icarus, 184, 3958.
  • O'Neill, H. C. S., and S. M. Eggins (2002), The effect of melt composition on trace element partitioning: An experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts, Chem. Geol., 186, 151181.
  • Owen, T., K. Biemann, D. R. Rushneck, J. E. Biller, D. W. Howarth, and A. L. Lafleur (1977), The composition of the atmosphere at the surface of Mars, J. Geophys. Res., 82, 46354639.
  • Reese, C. C., and V. S. Solomotov (2006), Fluid dynamics of local Martian magma oceans, Icarus, 184, 102120.
  • Righter, K., and C. K. Shearer (2003), Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars, Geochim. Cosmochim. Acta, 67, 24972507.
  • Righter, K., and M. J. Drake (1996), Core formation in Earth's Moon, Mars, and Vesta, Icarus, 124, 513529.
  • Righter, K., and M. J. Drake (1999), Effect of water on metal-silicate partitioning of siderophile elements: A high pressure and temperature terrestrial magma ocean and core formation, Earth Planet. Sci. Lett., 171, 383399.
  • Righter, K., and N. Chabot (2011), Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars, Meteorit. Planet. Sci., 46, 157176.
  • Righter, K., R. L. Hervig, and D. Kring (1998), Accretion and core formation in Mars: Molybdenum contents of melt inclusion glasses from three SNC meteorites, Geochim. Cosmochim. Acta, 62, 21672177.
  • Righter, K., M. Humayun, and L. R. Danielson (2008), Metal-silicate partitioning of palladium during core formation, Nat. Geosci., 1, 321324.
  • Righter, K., K. M. Pando, L. Danielson, and C. Lee (2010), Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Mn, Cr, V and W) between metal and silicate melt as a function of temperature and silicate melt composition, Earth Planet. Sci. Lett., 291, 19.
  • Righter, K., C. King, L. Danielson, K. M. Pando, and C. T. Lee (2011), Experimental determination of the metal/silicate partition coefficient of germanium: Implications for core and mantle differentiation, Earth Planet. Sci. Lett., 304, 379388.
  • Rubie, D. C., D. J. Frost, U. Mann, Y. Asahara, F. Nimmo, K. Tsuno, P. Kegler, A. Holzheid, and H. Palme (2011), Heterogeneous accretion, composition and core-mantle differentiation of the Earth, Earth Planet. Sci. Lett., 301, 3142.
  • Sanloup, C., A. Jambon, and P. Gillet (1999), A simple chondritic model of Mars, Earth Planet. Sci. Lett., 112, 4354.
  • Shafer, J. T., A. D. Brandon, T. J. Lapen, M. Righter, A. H. Peslier, and B. L. Beard (2010), Trace element systematics and 147Sm-143Nd and 176Lu-176Hf ages of Larkman Nunatak 06319: Closed system fractional crystallization of an enriched shergottite magma, Geochim. Cosmochim. Acta, 74, 73077328.
  • Siebert, J., A. Corgne, and F. J. Ryerson (2011), Systematics of metal-silicate partitioning for many siderophile elements applied to Earth's core formation, Geochim. Cosmochim. Acta, 75, 14511489.
  • Taylor, G. J. (2012), The composition of bulk silicate Mars, Abstract 6020 presented at The Mantle of Mars: Insights From Theory, Geophysics, High Pressure Studies and Geophysics Workshop, Lunar and Planet. Inst., Houston, Tex., 10–12 Sept.
  • Taylor, L. A., et al. (2002), Martian meteorite Dhofar 019: A new shergottite, Meteorit. Planet. Sci., 37, 11071128.
  • Thibault, Y., and M. J. Walter (1995), The influence of pressure and temperature on the metal–silicate partition coefficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation in a deep magma ocean, Geochim. Cosmochim. Acta, 59, 9911002.
  • Treiman, A. H., J. H. Jones, and M. J. Drake (1987), Core formation in the shergottite parent body and comparison with the Earth, J. Geophys. Res., 92, 627632.
  • Treiman, A. H., J. D. Gleason, and D. D. Bogard (2000), The SNC meteorites are from Mars, Planet. Space Sci., 48, 12131230.
  • Tsuno, K., D. J. Frost, and D. C. Rubie (2011), The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars, Physics Earth Planet. Inter., 185, 112.
  • Wade, J., and B. J. Wood (2005), Core formation and the oxidation state of the Earth, Earth Planet. Sci. Lett., 236, 7895.
  • Wadhwa, M. (2008), Redox conditions on small bodies, the Moon and Mars, Rev. Mineral. Geochem., 68, 493510.
  • Walker, D., L. Norby, and J. H. Jones (1993), Superheating effects on metal-silicate partitioning of siderophile elements, Science, 262, 18581861.
  • Walker, R. J. (2009), Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation, Chem. Erde Geochem., 69, 101125.
  • Wänke, H., and G. Dreibus (1988), Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. London A, 325, 545557.
  • Wood, B. J., J. Wade, and M. R. Kilburn (2008), Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning, Geochim. Cosmochim. Acta, 72, 14151426.