A thermal plume model for the Martian convective boundary layer

Authors

  • A. Colaïtis,

    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    Search for more papers by this author
  • A. Spiga,

    Corresponding author
    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    • Corresponding author: A. Spiga, Laboratoire de Météorologie Dynamique Tour 45, 3e et., Université P&M Curie, BP99, 4 pl. Jussieu, 75005 Paris, France. (aymeric.spiga@upmc.fr)

    Search for more papers by this author
  • F. Hourdin,

    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    Search for more papers by this author
  • C. Rio,

    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    Search for more papers by this author
  • F. Forget,

    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    Search for more papers by this author
  • E. Millour

    1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
    Search for more papers by this author

Abstract

[1] The Martian planetary boundary layer (PBL) is a crucial component of the Martian climate system. Global climate models (GCMs) and mesoscale models (MMs) lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the “thermal plume” model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in large-eddy simulations (LESs). We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first-order estimation of key turbulent quantities (e.g., PBL height and convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.

Ancillary