SEARCH

SEARCH BY CITATION

References

  • Andresen, C. S., et al. (2012), Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nat. Geosci., 5, 3741
  • Alley, R. B. (2000), The Younger Dryas cold interval as viewed from central Greenland, Quat. Sci. Rev., 19, 213226.
  • Balco, G., J. O. Stone, N. A., Lifton, and T. J. Dunai (2008), A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochron., 3, 174195.
  • Balco, G., J. Briner, R. C. Finkel, J. A. Rayburn, J. C. Ridge, and J. M. Schaefer (2009), Regional beryllium-10 production rate calibration for northeastern North America, Quat. Geochron., 4, 93107.
  • Ballantyne, C. K. (1997), Periglacial trimlines in the Scottish Highlands, Quat. Int., 38/39, 119136.
  • Ballantyne, C. K., C. Schnabel, and S. Xu (2009), Exposure dating and reinterpretation of coarse debris accumulations (rock glaciers) in the Cairngorm Mountains, Scotland., J. Quat. Sci., 24, 1931.
  • Bamber, J. L., S. Ekholm, and W. B. Krabill (2001a), A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geophys. Res., 106, 67336745.
  • Bamber, J. L., R. J. Hardy, and I. Joughin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glac., 46, 6774.
  • Bamber, J. L., R. L. Layberry, and S. P. Gogenini (2001b), A new ice thickness and bedrock elevation data set for Greenland: Part I, J. Geophys. Res., 106, 33, 773780.
  • Benn, D. I., and N. R. J. Hulton (2010), An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps, Comp. Geosci., 36, 605610.
  • Bennike, O. (2000), Palaeoecological studies of Holocene lake sediments from West Greenland, Palaeogeogr., Palaeoclimatol., Palaeoecol., 155, 285304.
  • Bennike, O., K. B. Hansen, K. L. Knudsen, D. N. Penney, and K. L. Rasmussen (1994), Quaternary marine stratigraphy and geochronology in central West Greenland, Boreas, 23, 194215.
  • Bennike, O., and S. Björck (2002), Chronology of the last recession of the Greenland Ice Sheet, J. Quat. Sci., 17, 211219.
  • Bierman, P. R., K. A. Marsella, C. Patterson, P. T. Davis, and M. Caffee (1999), Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsin glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach, Geomorph., 27, 2539.
  • Bjørk, A. A., K. H. Kjær, N. K. Korsgaard, S. A. Khan, K. K. Kjeldsen, C. S. Andresen, J. E. Box, N. K. Larsen, and S. Funder (2012), An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland, Nat. Geosci., 5, 427432.
  • Block, A. E., and R. E. Bell (2011), Geophysical evidence for soft bed sliding at Jakobshavn Isbrae, West Greenland, The Cryosphere, 5, 339366.
  • Briner, J. P., G. H. Miller, P. T. Davis, and R. C. Finkel (2006), Cosmogenic radionuclides from fiord landscapes support differential erosion by overriding ice sheets, Geol. Soc. Am. Bull., 118, 406420.
  • Briner, J. P., A. C. Bini, and R. S. Anderson (2009), Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. Nat. Geosci., doi:10.1038/ngeo556.
  • Briner, J. P., H. A. M. Stewart, N. E. Young, W. Philipps, and S. Losee (2010), Using proglacial-threshold lakes to constrain fluctuations of the Jakobshavn Isbrae ice margin, western Greenland, during the Holocene, Quat. Sci. Rev., 29, 38613874.
  • Briner, J. P., N. S. Young, E. M. Brent, M. Goehring, and J. M. Schaefer (2012), Constraining Holocene 10Be production rates in Greenland, J. Quat Sci., 27(1), 26.
  • Box, J. E., D. E. Bromwich, B. A. Veenhuis, L.-S. Bai, J. E. Stroeve, J. C. Roger, K. Steffen, T. Haran, and H. H. Wang (2006), Greenland Ice Sheet surface mass balance variability (1988–2004) from Calibrated Polar MM5 Output, J. Clim., 19, 27832800
  • Brett, C. P., and E. F. K. Zarudzki (1979), Project Westmar: A shallow marine geophysical survey on West Greenland continental shelf, Rapp., 87, Grønlands Geologiske Undersøgelse, Copenhagen.
  • Budd, W. F., D. Jenssen, and U. Radok (1971), Derived physical characteristics of the Antarctic ice sheet, ANARE Interim Reports, Series A. Glaciology. Publication No 120.
  • Chalmers, J. A., C. Pulvertaft, C. Marcussen, and A. K. Pedersen (1999), New insight into the structure of the Nuussuaq Basin, central West Greenland. Mar. Pet. Geol., 16, 197224.
  • Cuffey, K. M., and G. D. Clow (1997), Temperature, accumulation and ice sheet elevation in central Greenland through the last deglacial transition, J. Geophys. Res., 102(C12), 26383396.
  • Dahl, R. (1966), Blockfields, weathering pits and tor-like forms in the Narvik Mountains, Nordland, Norway, Geogr. Ann., 48A, 5585.
  • Di Nicola, L., C. Schnabel, K. M. Wilcken, and K. Gméling (2009), Determination of chlorine concentrations in whole rock: Comparison between prompt-gamma activation and isotope-dilution AMS analysis, Quat. Geochron., 4, 501507.
  • Dunne, J., D. Elmore, and P. Muzikar (1999), Scaling factors for the rate of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces, Geomorph., 27, 311.
  • Echelmeyer, K. A., and W. D. Harrison (1990), Jakobshavn Isbrae, West Greenland: Seasonal variations in velocity—or lack thereof, J. Glac., 36, 8288.
  • Echelmeyer, K. A., W. D. Harrison, C. Larsen, and J. E. Mitchell (1994), The role of the margins in the dynamics of an active ice stream, J. Glac., 40, 527538.
  • Evans, J., C. O´Cofaigh, J. A. Dowdeswell, and P. Wadhams (2009), Marine geophysical evidence for former expansion and flow of the Greenland Ice Sheet across the northeast Greenland continental shelf, J. Quat. Sci., 24, 279293.
  • Funder, S., and L. Hansen (1996), The Greenland ice sheet—A model for its culmination and decay during the after the Last Glacial Maximum, Bull. Geol. Soc. Den., 42, 137152.
  • Glasser, N., and C. Warren (1990), Medium-scale landforms of glacial erosion in southern Greenland: process and form, Geog. Ann., 72, 211215.
  • Glasser, N. F., and M. J. Siegert (2002), Calculating basal temperatures in ice sheets: An EXCEL spreadsheet method, Earth Surf. Proc. Land, 27, 673680.
  • Gordon, J. E. (1981), Ice scoured topography and its relationships to bedrock structure and ice movement in parts of northern Scotland and West Greenland, Geog. Ann., 63, 5565.
  • Håkansson, L., J. Briner, H. Alexandersson, A. Aldahand, and G. Possnerte (2007), 10Be ages from central east Greenland constrain the extent of the Greenland ice sheet during the Last Glacial Maximum, Quat. Sci. Rev., 26, 23162321.
  • Hall, A., and N. Glasser (2003), Reconstructing the basal thermal regime of an ice stream in a landscape of selective linear erosion: Glen Avon, Cairngorm Mountains, Scotland, Boreas, 32, 191208.
  • Holland, D. M., R. H. Thomas, B. deYoung, M. H. Ribergaard, and B. Lyberth (2008), Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nat. Geosci., doi:10.1038.
  • Howat, I. M., I. Joughin, S. Tulaczyk, and S. Gogineni (2005), Rapid retreat and acceleration of Helheim Glacier, East Greenland, Geophy. Res. Lett., 32, L22502, doi:10.1029/2005GL024737.
  • Hughes, A. L. C., E. Rainsley, T. Murray, C. Fogwill, C. Schnabel, and S. Xu (2012), Rapid response of Helheim Glacier, southeast Greenland, to early Holocene climate warming, Geology, 40, 427430.
  • Iken, A., K. A. Echelmeyer, W. D. Harrison, and M. Funk (1993), Mechanisms of fast flow in Jakobshavn Isbrae, West Greenland: Part 1. Measurements of temperature and water-level in deep boreholes, J. Glac., 39, 1525.
  • Jamieson, S. J. R., N. J. R. Hulton, and M. Hagdorn (2008), Modelling landscape evolution under ice sheets, Geomorph., 97, 91108.
  • Jamieson, S. J. R., A. Vieli, S. J. Livingstone, C. Ó. Cofaigh, C. Stokes, C.-D. Hillenbrand, and J. Dowdeswell (2012), Ice-stream stability on a reverse bed slope, Nat. Geosci., doi:10.1038/ngeo1600.
  • Jennings, A. E., M. Hald, and M. Smith (2006), Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: Evidence from southeastern Greenland shelf cores, Quat. Sci. Rev., 25, 282298.
  • Joughin, I. (2006), Climate change-Greenland rumbles louder as glaciers accelerate, Science, 311, 17191720.
  • Joughin, I., and R. Alley (2011), Stability of the West Antarctic ice sheet in a warming world, Nat. Geosci., 4, 506513
  • Joughin, I., B. E. Smith, I. M. Howat, T. Scambos, and T. Moon (2010), Greenland flow variability from ice-sheet-wide velocity mapping, J. Glac., 56, 415430.
  • Kelly, M. (1985), A review of the Quaternary geology of western Greenland, in Quaternary Environments in Eastern Canadian Arctic, Baffin Bay and Western Greenland, edited by J. T. Andrews, pp. 461501, Allen and Unwin, Boston.
  • Kessler, M. A., R. S. Anderson, and J. P. Briner (2008), Fjord insertion into continental margins driven by topographic steering of ice, Nat. Geosci., 1, 365369.
  • Knutz, P. C., M.-A. Sicre, H. Ebbesen, S. Christiansen, and A. Kuipers (2011), Deglacial retreat of the southern GreenlandIce Sheet linked with Irminger Current warm water transport, Paleoceanography, 26, PA3204, doi:10.1029/2010PA002053.
  • Layberry, R. L., and J. L. Bamber (2000), A new ice thickness and bed data set for the Greenland ice sheet: 2. Relationship between dynamics and basal topography, J. Geophys. Res., 106, 33,781788.
  • Larsen, N. K., K. H. Kjær, J. Olsen, S. Funder, K. K. Kjeldsen, and N. Nørgaard-Pedersen (2011), Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet, Quat. Sci. Rev., 30, 31713180.
  • Long, A. J., and D. H. Roberts (2003), Late Weichselian deglacial history of Disko Bugt, West Greenland, and the dynamics of Jakobshavns Isbrae ice stream, Boreas, 32, 208226.
  • Long, A. J., D. H. Roberts, and M. R. Wright (1999), Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Eijland, Disko Bugt, West Greenland, J. Quat. Sci., 14, 323345.
  • Long, A. J., D. H. Roberts, and S. Dawson (2006), Early Holocene history of the West Greenland Ice Sheet and the GH-8.2 event, Quat Sci. Rev., 25, 904922.
  • Luckman, A., T. Murray, R. de Lange, and E. Hanna (2006), Rapid and synchronous ice dynamic changes in East Greenland, Geophys. Res. Lett., 33, L03503.
  • Lykke-Andersen, H. (1998), Neogene-Quaternary depositional history of the East Greenland shelf in the vicinity of leg 152 shelf sites, in Proceedings of the Ocean Drilling Program, Scientific Results, edited by A. D. Saunders, H. C. Larsen, and S. W. Wise Jr., 152, pp. 2938, College Station, TX.
  • Maden, C., P. A. F. Anastasi, D. Dougans, S. P. H. T. Freeman, R. Kitchen, G. Klody, C. Schnabel, M. Sundquist, K. Vanner, and S. Xu (2007), SUERC AMS ion detection, Nuc. Inst. Meth., B259, 131139.
  • Marsella, K. A., P. R. Bierman, P. Tompson-Davis, and M. W. Caffee (2000), Cosmogenic 10Be and 26Al ages for the Last Glacial Maximum, eastern Baffin Island, Arctic Canada, GSA Bull., 112, 12961312.
  • McCarthy, D. (2011), Late Quaternary ice-ocean interactions in central West Greenland, PhD Thesis, Dept. of Geog., Durham University, UK.
  • Nesje, A., and S. O. Dahl (1990), Autochthonous block fields in southern Norway: Implications for the geometry, thickness, and isostatic loading of the Late Weichselian Scandinavian ice sheet, J. Quat. Sci., 5, 25234.
  • Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin (2009), Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 110114.
  • Nick, F. M., C. J. Van Der Veen, A. Vieli, and D. I. Benn (2010), A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J. Glac., 56(199), 781794.
  • Nishiizumi, K., E. L. Winterer, C. P. Kohl, J. Klein, R. Middleton, D. Lal, and J. R. Arnold (1989), Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res., 94, 1790717915.
  • Nye, J. (1952), The mechanics of glacier flow, J. Glac., 2, 8293.
  • Ó Cofaigh, C., J. A. Dowdeswell, J. Evans, N. H. Kenyon, J. Taylor, J. Mienert, and M. Wilken (2004), Timing and significance of glacially influenced mass-wasting in the submarine channels of the Greenland Basin, Mar. Geol., 2207, 3954.
  • Ó Cofaigh, C., et al. (2013), An extensive and dynamic ice sheet on the West Greenland shelf during the last glacial cycle, Geology, 41, 219222.
  • Phillips, W. M., A. M. Hall, C. K. Ballantyne, S. Binnie, P. W. Kubik, and S. Freeman (2008), Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages, J. Quat. Sci., 23, 101107.
  • Pfeffer, W. T. (2007), A simple mechanism for irreversible tidewater glacier retreat, J. Geophys. Res., doi:190 10.1029/2006JF000590.303.
  • Rea, B. R. W. B., M. M. R. Whalley, and J. E. Gordon (1996), Blockfields: Old or new? Evidence and implications from some plateaus in northern Norway, Geomorph., 15, 109121.
  • Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland Ice Sheet, Science, 311, 986990.
  • Rinterknecht, V. R., Y. Gorokhovich, J. M. Schaefer, and M. Caffee (2009), Preliminary 10Be chronology for the last deglaciation of the western margin of the Greenland Ice Sheet, J. Quat. Sci., 24, 270278.
  • Roberts, D. H., A. J. Long, B. Davies, and C. Schnabel (2010), Ice stream influence on west Greenland Ice Sheet dynamics during the Last Glacial Maximum, J. Quat. Sci., 25, 850864.
  • Roberts, D. H., A. J. Long, C. Schnabel, M. Simpson, and B. Davies (2009), Ice sheet extent and deglacial history of the central western sector of the Greenland Ice sheet, Quat. Sci. Rev., 28, 27602773.
  • Roberts, D. H., A. J. Long, C. Schnabel, M. Simpson, and S. Freeman (2008), The deglacial history of the southeast sector of the Greenland ice sheet during the Last Glacial Maximum, Quat. Sci. Rev., 27, 15051516.
  • Roberts, D. H., and A. J. Long (2005), Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, West Greenland: Implications for ice stream and ice sheet dynamics, Boreas, 34, 2542.
  • Schilling, D. H., and J. T. Hollin (1981), Numerical reconstructions of valley glaciers and small ice caps, in The Last Great Ice Sheets, edited by G. H. Denton, and T. J. Hughes, pp. 207220, Wiley, New York.
  • Schimmelpfennig, I., L. Benedetti, R. Finkel, R. Pik, P. H. Blard, D. Bourlés, P. Burnard, and A. Williams (2009), Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates, Quat. Geochronol., 4, 441461.
  • Schoof, C. (2007), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28.
  • Sclater, J. G., C. Jaupart, and D. Galson (1980), The heat flow through oceanic and continental crust and the heat loss of the Earth, Rev. Geophys. Space Phys., 18, 269311.
  • Simonarson, L. A. (1981), Upper Pleistocene and Holocene marine deposits and faunas on the north coast of Nugssuaq, West Greenland, Bull. Grønlands Geol. Unders., 40, 1107.
  • Simpson, M. R., G. Milne, P. Huybrechts, and A. J. Long (2009), Calibrating a glaciological model of the Greenland ice sheet from the last glacial maximum to present-day using field observations of relative sea level and ice extent, Quat. Sci. Rev., 28, 16311657.
  • Solheim, A., J. I. Faleide, E. S. Andersen, A. Elverhoi, C. F. Forsberg, K. Vanneste, G. Uenzelmann-Neben, and J. E. T. Channell (1998), Late Cenozoic seismic stratigraphy and glacial geological development of the East Greenland and Svalbard-Barents Sea continental margins, Quat. Sci. Rev., 17, 155184.
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid (2010), Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland, Nat. Geosci., 3, 182186.
  • Stone, J. O. (2000), Air pressure and cosmogenic isotope production., J. Geophys. Res., 105, 753759.
  • Sugden, D. E., N. Glasser, and C. M. Clapperton (1992), Evolution of large roches moutonneés, Geog. Ann., 74, 253264.
  • Sugden, D. E. (1974), Landscapes of glacial erosion in Greenland and their relationship to ice, topographic and bedrock conditions, Institute of British Geographers Special Publication, 7, 177195.
  • Sugden, D. E., and S. H. Watts (1977), Tors, felsenmeer, and glaciationsin northern Cumberland Peninsula, Baffin Isand, Can. J. Earth Sci., 14, 28172823.
  • Swift, D. A., C. Persano, F. M. Stuart, K. Gallagher, and A. Whitham (2008), A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region, Geomorphology, 94, 109125.
  • Truffer M., and K. A. Echelmeyer (2003), Of Isbrae and ice streams, Ann. Glac., 36, 6672.
  • van de Berg, W. J., M. van den Broeke, E. Janneke, E. V. Meijgaard, and F. Kaspar (2011), Significant contribution of insolation to Eemian melting of the Greenland ice sheet, Nat. Geosci., 4, 679683.
  • Van der Veen, C. J. (1999), Fundamentals of Glacier Dynamics, Balkema, Rotterdam.
  • Van der Veen, C. J. (2007), Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, doi:10.1029/2006GL028385.
  • van Tatenhove, F. G., A. Fabre, R. Greve, and P. Huybrechts (1996), Modelled ice-sheet margins of three Greenland ice-sheet models compared with a geological record from ice-marginal deposits in central West Greenland, Ann. Glac., 23, 5258.
  • Velicogna, I., and J. Wahr (2006), Acceleration of Greenland ice mass loss in spring 2004, Nature, 443, 329331.
  • Vieli, A., and F. M. Nick (2011), Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications, Surv. Geophys., 32, 437458.
  • Vincent, P. J., P. Wilson, T. C. Lord, C. Schnabel, and K. M. Wilcken (2010), Cosmogenic isotope (36Cl) surface exposure dating of the Norber erratics, Yorkshire Dales: Further constraints on the timing of the LGM deglaciation in Britain, Proc. Geol. Assoc., 121, 2431.
  • Weidick, A. (1968), Observations on some Holocene glacier fluctuations in West Greenland, Meddel. om Grönl., 165, 1202.
  • Weidick, A., and O. Bennike (2007), Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: A review, Geol. Surv. Den. and Green. Bull., No 14.
  • Wellner, J. S., A. L. Lowe, S. S. Shipp, and J. B. Anderson (2001), Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: Implications for ice sheet behaviour, J. Glac., 47, 397411.
  • Wilson, P., M. J. Bentley, C. Schnabel, R. Clark, and S. Xu (2008), Stone run (block stream) formation in the Falkland Islands over several cold stages, deduced from cosmogenic isotope (10Be and 26Al) surface exposure dating, J. Quat. Sci., 23, 461473.
  • Young, N. E., J. P. Briner, H. A. M. Stewart, Y. Axford, B. Csatho, D. Rood, and R. C. Finkel (2011) Response of Jakobshavn Isbræ, Greenland, to Holocene climate, Geology, 39, 131134.
  • Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen (2002), Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 297, 218222