SEARCH

SEARCH BY CITATION

References

  • Abbott, J. E., and J. R. D. Francis (1977), Saltation and suspension trajectories of solid grains in a water stream, Proc. Roy. Soc. Lond. A Mat., 284(1321), 225254.
  • Alley, R. B., and R. A. Bindschadler (2001), The West Antarctic Ice Sheet and sea-level rise, in The West Antarctic Ice Sheet: Behavior and Environment, Antarctic Research Series, vol. 77, edited by R. B. Alley and R. A. Bindschadler, pp. 111, American Geophysical Union, Washington, DC.
  • Alley, R. B., D. E. Lawson, E. B. Evenson, J. C. Strasser, and G. J. Larson (1998), Glaciohydraulic supercooling: A freeze-on mechanism to create stratified, debris-rich basal ice. II: Theory, J. Glaciol., 44(148), 563569.
  • Alley, R. B., D. E. Lawson, G. J. Larson, E. B. Evenson, and G. S. Baker (2003a), Stabilizing feedbacks in glacier-bed erosion, Nature, 424, 758760.
  • Alley, R. B., D. E. Lawson, E. B. Evenson, and G. J. Larson (2003b), Sediment, glaciohydraulic supercooling, and fast glacier flow, Ann. Glaciol., 36, 135141.
  • Armanini, A., and G. di Silvio (1988), A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions, J. Hydraul. Res., 26(3), 275292.
  • Bagnold, R. A. (1973), The nature of saltation and of ‘bed load’ transport in water, Proc. Roy. Soc. Lond. A Mat., 332, 473504.
  • Benn, D. I., and D. J. A. Evans (1998), Glaciers and Glaciation, Arnold, London.
  • Carstens, T. (1966), Experiments with supercooling and ice formation in flowing water, Geofys. Publ., 26(9), 118.
  • Church, M., M. A. Hassan, and J. F. Wolcott (1998), Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations, Water Resour. Res., 34(11), 31693179.
  • Clarke, G. K. C. (2003), Hydraulics of subglacial outburst floods: New insights from the Spring-Hutter formulation, J. Glaciol., 49(165), 299313.
  • Cook, S., and D. Swift (2012), Subglacial basins: Their origin and importance in glacial systems and landscapes, Earth Sci. Rev., 115(4), 332372, doi:10.1016/j.earscirev.2012.09.009.
  • Cook, S., Z. Robinson, I. Fairchild, P. Knight, R. Waller, and I. Boomer (2010), The role of glaciohydraulic supercooling in the formation of stratified facies basal ice: Svínafellsjökull and Skaftafellsjökull, southeast Iceland, Boreas, 39(1), 2438, doi:10.1111/j.1502-3885.2009.00112.x.
  • Cook, S. J., P. G. Knight, and R. I. Waller (2006), Glaciohydraulic supercooling: the process and its significance, Prog. Phys. Geog., 30(5), 577588, doi:10.1177/0309133306071141.
  • Cook, S. J., P. G. Knight, R. I. Waller, Z. P. Robinson, and W. G. Adam (2007), The geography of basal ice and its relationship to glaciohydraulic supercooling: Svínafellsjökull, southeast Iceland, Quat. Sci. Rev., 26(19–21), 23092315, doi:10.1016/j.quascirev.2007.07.010.
  • Cook, S. J., P. G. Knight, D. A. Knight, and R. I. Waller (2012), Laboratory observations of sediment entrainment by freezing supercooled water, Geogr. Ann. A, 94(19–21), 351362, doi:10.1111/j.1468-0459.2011.00445.x.
  • Creyts, T. T., and G. K. C. Clarke (2010), Hydraulics of subglacial supercooling: Theory and simulations for clear water flows, J. Geophys. Res., 115, F03021, doi:10.1029/2009JF001417.
  • Creyts, T. T., and C. G. Schoof (2009), Drainage through subglacial water sheets, J. Geophys. Res., 114, F04008, doi:10.1029/2008JF001215.
  • Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., 693 pp., Butterworth-Heinemann/Elsevier, Burlington, MA.
  • Daly, S. F. (1984), Frazil ice dynamics, Tech. Rep. 84-1, U.S. Army CRREL, Hanover, NH.
  • Einstein, H. A. (1968), Deposition of suspended particles in a gravel bed, J. Hydraul. Div. Am. Soc. Civ. Eng., 95(5), 11971205.
  • Fountain, A. G., R. W. Jacobel, R. Schlichting, and P. Jansson (2005), Fractures as the main pathways of water flow in temperate glaciers, Nature, 433(7026), 618621, doi:10.1002/esp.1038.
  • Fricker, H. A., and T. Scambos (2009), Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008, J. Glaciol., 55(190), 303315.
  • Garcia, M., and G. Parker (1991), Entrainment of bed sediment into suspension, J. Hydraul. Eng., 117(4), 414435.
  • Garcia, M. H. (2008), Sediment transport and morphodynamics, in Sedimentation Engineering Processes, Measurements, Modeling, and Practice, ASCE Manuals and Reports on Engineering Practice, vol. 110, pp. 21163, American Society of Civil Engineers, Reston, VA.
  • Gomez, B., and M. Church (1989), An assessment of bed load sediment transport formulae for gravel bed rivers, Water Resour. Res., 25(6), 11611186.
  • Hallet, B. (1979), A theoretical model of glacial abrasion, J. Glaciol., 23, 3950.
  • Hallet, B. (1996), Glacial quarrying: A simple theoretical model, Ann. Glaciol., 22, 18.
  • Hallet, B., L. Hunter, and J. Bogen (1996), Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global Planet. Change, 12, 213225.
  • Hammar, L., and H. T. Shen (1995), Frazil evolution in channels, J. Hydraul. Res., 33(3), 291306.
  • Henderson, F. M. (1966), Open Channel Flow, MacMillan, New York.
  • Hewitt, I. J. (2011), Modelling distributed and channelized subglacial drainage, J. Glaciol., 57(202), 302314.
  • Hildes, D. H. D. (2001), Modelling subglacial erosion and englacial sediment transport of the North American Ice Sheets, Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada.
  • Hildes, D. H. D., G. K. C. Clarke, G. E. Flowers, and S. J. Marshall (2004), Subglacial erosion and englacial sediment transport modelled for North American ice sheets, Quat. Sci. Rev., 23(3–4), 409430.
  • Hooke, R. L. (1991), Positive feedbacks associated with erosion of glacial cirques and overdeepenings, Geol. Soc. Am. Bull., 103(8), 11041108.
  • Hooke, R. L., and N. R. Iverson (1995), Grain-size distribution in deforming subglacial tills: Role of grain fracture, Geology, 23(1), 5760.
  • Hooke, R. L., and V. Pohjola (1994), Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden, J. Glaciol, 40(134), 140148.
  • Hubbard, B., S. Cook, and H. Coulson (2009), Basal ice facies: A review and unifying approach, Quat. Sci. Rev., 28, 19561969, doi:10.1016/j.quascirev.2009.03.005.
  • Iken, A., and R. A. Bindschadler (1986), Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: Conclusions about drainage system and sliding mechanism, J. Glaciol., 32(110), 101119.
  • Iverson, N. R., and D. J. Semmens (1995), Intrusion of ice into porous media by regelation: A mechanism of sediment entrainment by glaciers, J. Geophys. Res., 100(B4), 10,21910,230.
  • Kamb, B. (2001), Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion, in The West Antarctic Ice Sheet: Behavior and Environment, Antarctic Research Series, vol. 77, edited by R. B. Alley and R. A. Bindschadler, pp. 157199, American Geophysical Union, Washington, DC.
  • Khatwa, A., J. K. Hart, and A. J. Payne (1999), Grain textural analysis across a range of glacial facies, Ann. Glaciol., 28, 111117.
  • Lawson, D. E. (1979), Sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska, Tech. Rep. 79-9, U.S. Army CRREL, Hanover, NH.
  • Lawson, D. E. (1993), Glaciohydrologic and glaciohydraulic effects on runoff and sediment yield in glacierized basins, Tech. Rep. 93-2, U.S. Army CRREL, Hanover, NH.
  • Lawson, D. E., J. C. Strasser, E. B. Evenson, R. B. Alley, G. J. Larson, and S. A. Arcone (1998), Glaciohydraulic supercooling: A freeze-on mechanism to create stratified, debris-rich basal ice. I: Field evidence, J. Glaciol., 44(148), 547562.
  • Lee, H. Y., and I. S. Hsu (1994), Investigation of saltating particle motions, J. Hydraul. Eng., 120(7), 831845.
  • Murray, T., and G. K. C. Clarke (1995), Black-box modeling of the subglacial water system, J. Geophys. Res., 100(B7), 10,23110,245.
  • Nienow, P., M. Sharp, and I. Willis (1998), Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier D'Arolla, Switzerland, Earth Surf. Processes Landforms, 23(9), 825843.
  • Nye, J. F. (1953), The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn, Proc. Roy. Soc. Lond. A Mat., 219, 477489.
  • Nye, J. F. (1976), Water flow in glaciers: Jökulhlaups, tunnels, and veins, J. Glaciol., 17(76), 181207.
  • Palmer, S., A. Shepherd, P. Nienow, and I. Joughin (2011), Seasonal speedup of the Greenland Ice Sheet linked to the routing of surface water, Earth Planet. Sci. Lett., 302(3–4), 423428, doi:10.1016/j.epsl.2010.12.037.
  • Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., Pergamon, Tarrytown, NY.
  • Pearce, J. T., F. J. Pazzaglia, E. B. Evenson, D. E. Lawson, R. B. Alley, D. Germanoski, and J. D. Denner (2003), Bedload component of glacially discharged sediment: insights from the Matanuska Glacier, Alaska, Geology, 31(1), 710.
  • Phillips, B. C., and A. J. Sutherland (1989), Spatial lag effects in bed load sediment transport, J. Hydraul. Res., 27(1), 115203.
  • Rempel, A. W. (2008), A theory for ice–till interaction and sediment entrainment beneath glaciers, J. Geophys. Res., 113(F1), F01013, doi:10.1029/2007JF000870.
  • Richards, K., M. Sharp, N. Arnold, A. Gurnell, M. Clark, M. Tranter, P. Nienow G. Brown, I. Willis, and W. Lawson (1996), An integrated approach to modelling hydrology and water quality in glacierized catchments, Hydrol. Processes, 10(4), 479508.
  • Roberts, M. J., F. S. Tweed, A. J. Russell, Ó. Knudsen, D. E. Lawson, G. J. Larson, E. B. Evenson, and H. Björnsson (2002), Glaciohydraulic supercooling in Iceland, Geology, 30(5), 439442.
  • Röthlisberger, H. (1972), Water pressure in intra- and subglacial channels, J. Glaciol., 11(62), 177203.
  • Röthlisberger, H., and H. Lang (1987), Glacial hydrology, in Glacio-Fluvial Sediment Transfer: An Alpine Perspective, edited by A. M. Gurnell and M. J. Clark, pp. 207284, John Wiley and Sons, New York.
  • Schoof, C. (2010), Ice–sheet acceleration driven by melt supply variability, Nature, 468, 803806, doi:10.1038/nature09618.
  • Shreve, R. L. (1972), Movement of water in glaciers, J. Glaciol., 11(62), 205214.
  • Shreve, R. L. (1985), Esker characteristics in terms of glacier physics, Katahdin esker system, Maine, Geol. Soc. Am. Bull., 96, 639646.
  • Spring, U., and K. Hutter (1981), Numerical studies of jökulhlaups, Cold Reg. Sci. Technol., 4(3), 227244.
  • Spring, U., and K. Hutter (1982), Conduit flow of a fluid through its solid phase and its application to intraglacial channel flow, Int. J. Eng. Sci., 20(2), 327363.
  • Staniforth, A., and J. Côté (1991), Semi-Lagrangian integration schemes for atmospheric models—A review, Mon. Weather Rev., 119(9), 22062223.
  • Strasser, J. C., D. E. Lawson, G. J. Larson, E. B. Evenson, and R. B. Alley (1996), Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: Evidence for subglacial ice accretion, Ann. Glaciol., 22, 126133.
  • Sugden, D. E., and B. S. John (1976), Glaciers and Landscape, pp. 151258, Edward Arnold, London.
  • Tsai, V. C., and J. R. Rice (2010), A model for turbulent hydraulic fracture and application to crack propagation at glacier beds, J. Geophys. Res., 115, F03007, doi:10.1029/2009JF001474.
  • Tulaczyk, S., R. P. Scherer, and C. D. Clark (2001), A ploughing model for the origin of weak tills beneath ice streams: A qualitative treatment, Quat. Int., 86, 5970.
  • Tweed, F. S., M. J. Roberts, and A. J. Russell (2005), Hydrologic monitoring of supercooled meltwater from Icelandic glaciers, Quat. Sci. Rev., 24, 23082318, doi:10.1016/j.quascirev.2004.11.020.
  • van Rijn, L. C. (1984a), Sediment transport. Part I: Bed load transport, J. Hydraul. Eng., 110(10), 14311456.
  • van Rijn, L. C. (1984b), Sediment transport. Part II: Suspended load transport, J. Hydraul. Eng., 110(11), 16131641.
  • Walder, J. S., and A. Fowler (1994), Channelized subglacial drainage over a deformable bed, J. Glaciol., 40(134), 315.
  • Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3(21), 3338.
  • Willis, I. C., K. S. Richards, and M. J. Sharp (1996), Links between proglacial stream suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway, Hydrol. Processes, 10(4), 629648.
  • Wu, W., D. Vieira, and S. S. Y. Wang (2004), One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks, J. Hydraul. Eng., 130(9), 914923, doi:10.1061/(ASCE)0733-9429(2004)130:9(914).
  • Yalin, M. S. (1972), Mechanics of Sediment Transport, pp. 290, Pergamon, New York.