SEARCH

SEARCH BY CITATION

References

  • Aciego, S. M., D. J. DePaolo, B. M. Kennedy, M. P. Lamb, K. W. W. Sims, and W. E. Dietrich (2007), Combining [He3−] cosmogenic dating with U-Th/He eruption ages using olivine in basalt, Earth Planet. Sci. Lett., 254(3-4), 288302.
  • Amidon, W. H., and K. A. Farley (2011), Cosmogenic He3− production rates in apatite, zircon and pyroxene inferred from Bonneville flood erosional surfaces, Quat. Geochronol., 6(1), 1021.
  • Amidon, W. H., D. H. Rood, and K. A. Farley (2009), Cosmogenic He-3 and Ne-21 production rates calibrated against Be-10 in minerals from the Coso volcanic field, Earth Planet. Sci. Lett., 280(1-4), 194204.
  • Attal, M., and J. Lavé (2009), Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114(F4), F04023.
  • Baker, V. R. (1973), Paleohydrology and sedimentology of the Lake Missoula flooding in eastern Washington, Geol. Soc. Am., Spec. Pap., 144, 79.
  • Balco, G., M. D. Purvance, and D. H. Rood (2011), Exposure dating of precariously balanced rocks, Quat. Geochronol., 6, 295303.
  • Behr, W. M., et al. (2010), Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California, Geol. Soc. Am. Bull., 122(9-10), 13601377.
  • Bhandari, N., et al. (1993), Depth and size dependence of cosmogenic nuclide production-rates in stony meteoroids, Geochim. Cosmochim. Ac., 57(10), 23612375.
  • Blard, P. H., and K. A. Farley (2008), The influence of radiogenic He-4 on cosmogenic He-3 determinations in volcanic olivine and pyroxene, Earth Planet. Sci. Lett., 276(1-2), 2029.
  • Blum, M. D., and T. E. Tornqvist (2000), Fluvial responses to climate and sea-level change: A review and look forward, Sedimentology, 47, 248.
  • Bretz, J. H. (1923), The channeled scablands of the Columbia Plateau, J. Geol., 31(8), 617649.
  • Briner, J. P. (2009), Moraine pebbles and boulders yield indistinguishable Be-10 ages: A case study from Colorado, USA, Quat. Geochronol., 4(4), 299305.
  • Buffington, J. M., D. R. Montgomery, and H. M. Greenberg (2004), Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments, Can. J. Fish. Aquat. Sci., 61(11), 20852096.
  • Carling, P. A. (1983), Threshold of coarse sediment transport in broad and narrow natural streams, Earth Surf. Process. Landforms, 8, 118.
  • Carling, P. A. (1996), Morphology, sedimentology and paleohydraulic significance of large gravel dunes: Altai Mountains, Siberia, Sedimentology, 43, 647664.
  • Carling, P. A., M. Hoffman, and A. S. Blatter (2002), Initial motion of boulders in bedrock channels, in Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, edited by P. K. House, R. H. Webb, V. R. Baker, and D. R. Levish, American Geophysical Union, Washington DC.
  • Carretier, S., and V. Regard (2011), Is it possible to quantify pebble abrasion and velocity in rivers using terrestrial cosmogenic nuclides?, J. Geophys. Res., 116(F4), F04003.
  • Carretier, S., V. Regard, and C. Soual (2009), Theoretical cosmogenic nuclide concentration in river bed load clasts: Does it depend on clast size?, Quat. Geochronol., 4(2), 108123.
  • Cerling, T. E., and H. Craig (1994), Geomorphology and in-situ cosmogenic isotopes, Annu. Rev. Earth Planet. Sci., 22, 273317.
  • Cerling, T. E., R. J. Poreda, and S. L. Rathburn (1994), Cosmogenic He-3 and Ne-21 age of the Big-Lost-River-Flood, Snake-River-Plain, Idaho, Geology, 22(3), 227230.
  • Costa, J. E. (1983), Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range, Geol. Soc. Am. Bull., 94(8), 9861004.
  • DiBiase, R. A., K. X. Whipple, A. M. Heimsath, and W. B. Ouimet (2010), Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sci. Lett., 289(1-2), 134144.
  • Douglass, D. C., B. S. Singer, M. R. Kaplan, D. M. Mickelson, and M. W. Caffee (2006), Cosmogenic nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines, Lago Buenos Aires, Argentina: Interpretive strategies and paleoclimate implications, Quat. Geochronol., 1(1), 4358.
  • Dunai, T. J. (2010), Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, 187 pp., Cambridge University Press, Cambridge.
  • Dunne, J., D. Elmore, and P. Muzikar (1999), Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces, Geomorphology, 27(1-2), 3-11.
  • Eaton, E. C. (1935), Flood and erosion control problems and their solution, Trans. Am. Soc. Civ. Eng., 101, 13021330.
  • Ehlmann, B. L., H. A. Viles, and M. C. Bourke (2008), Quantitative morphologic analysis of boulder shape and surface texture to infer environmental history: A case study of rock breakdown at the Ephrata Fan, Channeled Scabland, Washington, J. Geophys. Res., 113(F2).
  • Frankel, K. L., et al. (2007), Cosmogenic Be-10 and Cl-36 geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone, J. Geophys. Res., 112(B6), 18.
  • Gayer, E., S. Mukhopadhyay, and B. J. Meade (2008), Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic He-3 in olivines from Hawaiian river sediments, Earth Planet. Sci. Lett., 266(3-4), 303315.
  • Goehring, B. M., M. D. Kurz, G. Balco, J. M. Schaefer, J. Licciardi, and N. Lifton (2010), A reevaluation of in situ cosmogenic He-3 production rates, Quat. Geochronol., 5(4), 410418.
  • Gosse, J. C., and F. M. Phillips (2001), Terrestrial in situ cosmogenic nuclides: Theory and application, Quat. Sci. Rev., 20(14), 14751560.
  • Graf, T., H. Baur, and P. Signer (1990), A model for the production of cosmogenic nuclides in chondrites, Geochim. Cosmochim. Ac., 54(9), 25212534.
  • Granger, D. E., J. W. Kirchner, and R. Finkel (1996), Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment, J. Geol., 104(3), 249257.
  • Granger, D. E., C. S. Riebe, J. W. Kirchner, and R. C. Finkel (2001), Modulation of erosion on steep granitic slopes by boulder armoring, as revealed by cosmogenic 26Al and 10Be, Earth Planet. Sci. Lett., 186(2), 269281.
  • Griffis, V. W., and J. R. Stedinger (2007), Evolution of flood frequency analysis with Bulletin 17, J. Hydrol. Eng., 12(3), 283297.
  • Hallet, B., and J. Putkonen (1994), Surface dating of dynamic landforms—Young boulders on aging moraines, Science, 265(5174), 937940.
  • Heimsath, A. M., R. A. DiBiase, and K. X. Whipple (2012), Soil production limits and the transition to bedrock-dominated landscapes, Nat. Geosci., 5(3), 210214.
  • Heyman, J., A. P. Stroeven, J. M. Harbor, and M. W. Caffee (2011), Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages, Earth Planet. Sci. Lett., 302(1-2), 7180.
  • Howard, A. (1998), Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion, and sediment transport, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, edited by K. J. Tinker and E. E. Wohl, pp. 297319, American Geophysical Union, Washington D.C.
  • Johnson, J. P. L., K. X. Whipple, L. S. Sklar, and T. C. Hanks (2009), Transport slopes, sediment cover, and bedrock channel incision in the Henry Mountains, Utah, J. Geophys. Res., 114(F2), F02014.
  • Johnston, C. E., E. D. Andrews, and J. Pitlick (1998), In situ determination of particle friction angles of fluvial gravels, Water Resour. Res., 34(8), 20172030.
  • Kelsey, H. M. (1978), Earthflows in Franciscan Melange, Van Duzen River Basin, California, Geology, 6(6), 361364.
  • Kodama, Y. (1994), Experimental-study of abrasion and its role in producing downstream fining in gravel-bed rivers, J. Sediment. Res. Sect. A-Sediment. Petrol. Process., 64(1), 7685.
  • Kondolf, G. M., and M. G. Wolman (1993), The sizes of salmonid spawning gravels, Water Resour. Res., 29(7), 22752285.
  • Kurz, M. D. (1986), In situ production of terrestrial cosmogenic helium and some applications to geochronology, Geochim. Cosmochim. Ac., 50(12), 28552862.
  • Lal, D. (1991), Cosmic-ray labeling of erosion surfaces—In situ nuclide production-rates and erosion models, Earth Planet. Sci. Lett., 104(2-4), 424439.
  • Lal, D. (1995), On cosmic-ray exposure ages of terrestrial rocks: A suggestion, Radiocarbon, 37(3), 889898.
  • Lal, D., and J. Chen (2005), Cosmic ray labeling of erosion surfaces II: Special cases of exposure histories of boulders, soils and beach terraces, Earth Planet. Sci. Lett., 236(3-4), 797813.
  • Lamb, M. P., W. E. Dietrich, S. M. Aciego, D. J. DePaolo, and M. Manga (2008), Formation of Box Canyon, Idaho, by megaflood: Implications for seepage erosion on Earth and Mars, Science, 320(5879), 10671070.
  • Lamb, M. P., W. E. Dietrich, and L. S. Sklar (2008), A model for fluvial bedrock incision by impacting suspended and bed load sediment, J. Geophys. Res., 113(F3).
  • Lamb, M. P., W. E. Dietrich, and J. G. Venditti (2008), Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?, J. Geophys. Res., 113(F2), F02008.
  • Lamb, M. P., and M. A. Fonstad (2010), Rapid formation of a modern bedrock canyon by a single flood event, Nat. Geosci., 3(7), 477481.
  • Licciardi, J. M., M. D. Kurz, P. U. Clark, and E. J. Brook (1999), Calibration of cosmogenic He-3 production rates from Holocene lava flows in Oregon, USA, and effects of the Earth's magnetic field, Earth Planet. Sci. Lett., 172(3-4), 261271.
  • Mackey, B. H., and M. P. Lamb (2010), Modeling the evolution of in situ cosmogenic nuclide concentrations in mobile and eroding boulders—Applications to channel incision and flood frequency analysis, EOS Trans. AGU, EP41B-0703.
  • Malamud, B. D., and D. L. Turcotte (2006), The applicability of power-law frequency statistics to foods, J. Hydrol., 322(1-4), 168180.
  • Margerison, H. R., W. M. Phillips, F. M. Stuart, and D. E. Sugden (2005), Cosmogenic 3He concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: Interpreting exposure ages and erosion rates, Earth Planet. Sci. Lett., 230(1–2), 163175.
  • Marshall, J. A., and L. S. Sklar (2012), Mining soil databases for landscape-scale patterns in the abundance and size distribution of hillslope rock fragments, Earth Surf. Process. Landforms, 37(3), 287300.
  • Masarik, J., and R. Wieler (2003), Production rates of cosmogenic nuclides in boulders, Earth Planet. Sci. Lett., 216(1-2), 201208.
  • Masarik, J., D. Kollar, and S. Vanya (2000), Numerical simulation of in situ production of cosmogenic nuclides: Effects of irradiation geometry, Nucl. Instrum. Methods Phys. Res., Sect. B, 172, 786789.
  • Matmon, A., D. P. Schwartz, R. Finkel, S. Clemmens, and T. Hanks (2005), Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic Al-26 and Be-10, Geol. Soc. Am. Bull., 117(5-6), 795807.
  • Molnar, P., and P. England (1990), Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?, Nature, 346(6279), 2934.
  • Montgomery, D. R., T. B. Abbe, J. M. Buffington, N. P. Peterson, K. M. Schmidt, and J. D. Stock (1996), Distribution of bedrock and alluvial channels in forested mountain drainage basins, Nature, 381(6583), 587589.
  • Muzikar, P. (2008), Cosmogenic nuclide concentrations in episodically eroding surfaces: Theoretical results, Geomorphology, 97(3-4), 407413.
  • Nelson, P. A., J. G. Venditti, W. E. Dietrich, J. W. Kirchner, H. Ikeda, F. Iseya, and L. S. Sklar (2009), Response of bed surface patchiness to reductions in sediment supply, J. Geophys. Res., 114(F2), F02005.
  • Niedermann, S. (2002), Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools for surface processes, in Noble Gases in Geochemistry and Cosmochemistry, edited by D. Porcelli, C. J. Ballentine and R. Wieler, pp. 731784, Mineralogical Soc America, Washington.
  • Nishiizumi, K., E. L. Winterer, C. P. Kohl, J. Klein, R. Middleton, D. Lal, and J. R. Arnold (1989), Cosmic-ray production-rates of Be-10 and Al-26 in quartz from glacially polished rocks, J. Geophys. Res., 94(B12), 1790717915.
  • O'Connor, J. E. (1993), Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood, Geological Society of America, Boulder, CO.
  • Parker, G., and P. C. Klingeman (1982), On why gravel bed streams are paved, Water Resour. Res., 18(5), 14091423.
  • Putkonen, J., and T. Swanson (2003), Accuracy of cosmogenic ages for moraines, Quat. Res., 59(2), 255261.
  • Putnam, A. E., J. M. Schaefer, D. J. A. Barrell, M. Vandergoes, G. H. Denton, M. R. Kaplan, R. C. Finkel, R. Schwartz, B. M. Goehring, and S. E. Kelley (2010), In situ cosmogenic Be-10 production-rate calibration from the Southern Alps, New Zealand, Quat. Geochronol., 5(4), 392409.
  • Repka, J. L., R. S. Anderson, and R. C. Finkel (1997), Cosmogenic dating of fluvial terraces, Fremont River, Utah, Earth Planet. Sci. Lett., 152(1-4), 5973.
  • van Rijn, L. C. (1984), Sediment transport: Part 2. Suspended load transport, J. Hydraul. Eng., 110(11), 16131641.
  • Ritz, J. F., E. T. Brown, D. L. Bourles, H. Philip, A. Schlupp, G. M. Raisbeck, F. Yiou, and B. Enkhtuvshin (1995), Slip rates along active faults estimated with cosmic-ray exposure dates—Application to the Bogd Fault, Gobi-Altai, Mongolia, Geology, 23(11), 10191022.
  • Rogers, H. E., T. W. Swanson, and J. O. Stone (2012), Long-term shoreline retreat rates on Whidbey Island, Washington, USA, Quat. Res., 78(2), 315322.
  • Schmeeckle, M. W., J. M. Nelson, and R. L. Shreve (2007), Forces on stationary particles in near-bed turbulent flows, J. Geophys. Res., 112(F02003), doi:10.1029/2006JF000536.
  • Schmidt, S., R. Hetzel, J. Kuhlmann, F. Mingorance, and V. A. Ramos (2011), A note of caution on the use of boulders for exposure dating of depositional surfaces, Earth Planet. Sci. Lett., 302(1-2), 6070.
  • Schumm, S. A., and M. A. Stevens (1973), Abrasion in place: A mechanism for rounding and size reduction of coarse sediments in rivers, Geology, 1(1), 3740.
  • Seidl, M. A., W. E. Dietrich, and J. W. Kirchner (1994), Longitudinal profile development into bedrock—An analysis of Hawaiian channels, J. Geol., 102(4), 457474.
  • Seidl, M. A., R. C. Finkel, M. W. Caffee, G. B. Hudson, and W. E. Dietrich (1997), Cosmogenic isotope analyses applied to river longitudinal profile evolution: Problems and interpretations, Earth Surf. Process. Landforms, 22(3), 195209.
  • Sklar, L. S., and W. E. Dietrich (1998), River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, edited by K. J. Tinker and E. E. Wohl, pp. 237260, American Geophysical Union, Washington D.C.
  • Sneed, E. D., and R. L. Folk (1958), Pebbles in the lower-Colorado-River, Texas. A study in particle morphogenesis, J. Geol., 66(2), 114150.
  • Stirling, M. W., and R. Anooshehpoor (2006), Constraints on probabilistic seismic-hazard models from unstable landform features in New Zealand, Bull. Seismol. Soc. Am., 96(2), 404414.
  • Swanson, T. W., and M. L. Caffee (2001), Determination of 36Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo Islands, Washington, Quat. Res., 56(3), 366382.
  • Turowski, J. M., E. M. Yager, A. Badoux, D. Rickenmann, and P. Molnar (2009), The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Process. Landforms, 34(12), 16611673.
  • Vassallo, R., J.-F. Ritz, and S. Carretier (2011), Control of geomorphic processes on 10Be concentrations in individual clasts: Complexity of the exposure history in Gobi-Altay range (Mongolia), Geomorphology, 135(1–2), 3547.
  • Vassallo, R., et al. (2007), Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia, Tectonics, 26(5), TC5013.
  • Whipple, K. X. (2004), Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Planet. Sci., 32, 151185.
  • Whipple, K. X., G. S. Hancock, and R. S. Anderson (2000), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geol. Soc. Am. Bull., 112(3), 490503.
  • Williams, G. P. (1983), Paleohydrological methods and some examples from Swedish fluvial environments. 1. Cobble and boulder deposits, Geogr. Ann. A., 65(3-4), 227243.
  • Wohl, E. E. (1992), Bedrock benches and boulder bars—Floods in the Burdekin Gorge of Australia, Geol. Soc. Am. Bull., 104(6), 770778.
  • Wolman, M. G., and J. P. Miller (1960), Magnitude and frequency of forces in geomorphic processes, J. Geol., 68(1), 5474.
  • Yager, E. M., J. W. Kirchner, and W. E. Dietrich (2007), Calculating bed load transport in steep boulder bed channels, Water Resour. Res., 43(7), 24.
  • Yager, E. M., J. M. Turowski, D. Rickenman, and B. W. McArdell (2012), Sediment supply, grain protrusion, and bedload transport in mountain streams, Geophys. Res. Lett., 39(10), L10402.