SEARCH

SEARCH BY CITATION

References

  • Aniya, M. (1988), Glacier inventory for the Northern Patagonia Icefield, Chile, and Variations 1944/45 to 1985/86, Arct. Alp. Res., 20, 179187.
  • Aniya, M., H. Sato, R. Naruse, P. Skvarca, and G. Casassa (1996), The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America, Photogramm. Eng. Remote Sens., 62, 13611369.
  • Aravena, J.-C., and B. H. Luckman (2009), Spatio-temporal rainfall patterns in Southern South America, Int. J. Climatol., 29, 21062120.
  • Aristarain, A., and R. Delmas (1993), Firn-core study from the Southern Patagonia Ice Cap, South America, J. Glaciol., 39, 249254.
  • Barcaza, G., M. Amiya, T. Matsumoto, and T. Aoki (2009), Satellite-derived equilibrium lines in Northern Patagonia Icefield, Chile, and their implications to Glacier variations, Arct. Antarct. Alp. Res., 41, 174182.
  • Bukovsky, M. S., and J. K. David (2009), Precipitation simulations using WRF as a nested regional climate model, J. Appl. Meteorol., 48, 21522159.
  • Carrasco, J., G. Casassa, and A. Rivera (2002), Meteorological and climatological aspects of the Southern Patagonia Icefield, in The Patagonian Icefields A Unique Natural Laboratory for Environmental and Climate Change Studies, edited by G. Cassasa, F.V. Sepúlveda, and R.M. Sinclair, 2941, Kluwer Academic / Plenumn Publishers, New York.
  • Casassa, G. (1987), Ice thickness deduced from gravity anomalies on Soler Glacier, Nef Glacier and the Northern Patagonia Icefield, Bull. Glacier Res., 4, 4357.
  • Chou, M.-D., and M. J. Suarez (1994), An efficient thermal infrared radiation parameterization for use in general circulation models, Tech. Rep., Laboratory for Atmospheres NASA/Goddard Space Flight Center.
  • Corripio, J. (2003), Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain, Int. J. Geogr. Inf. Sci., 17, 123.
  • Escobar, F., F. Vidal, C. Garin, and R. Naruse (1992), Water balance in the Patagonia Icefield, Tech. Rep., Institute of Low Temperature Research.
  • Falvey, M., and R. Garreaud (2007), Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences, J. Hydrometeorol., 8, 171193.
  • Falvey, M., and R. D. Garreaud (2009), Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006), J. Geophys. Res. Atmos., 114, D04102, doi:10.1029/2008JD010519.
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007), Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 15471578.
  • Garreaud, R., P. Lopez, M. Minvielle, and M. Rojas (2012), Large scale control on the Patagonia Climate, J. Climate, 26, 215230, doi:10.1175/JCLI-D-12-00001.1.
  • Giorgi, F., and L. O. Mearns (1991), Approaches to the simulation of regional climate change: A review, Rev. Geophys., 29(2), 191216.
  • Houze, R. A., Jr. (2012), Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (2001), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 28, Cambridge University Press.
  • Ibarzabal y Donangelo, T., J. Hoffmann, and R. Naruse (1996), Recent climate changes in Southern Patagonia, Bull. Glacier Res., 14, 2936.
  • IPCC AR4 (2007), Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 589662, Chapter 8, Cambridge University Press, Cambridge and New York.
  • Jiang, Q., and R. B. Smith (2003), Cloud Timescales and Orographic Precipitation, J. Atmos. Sci., 60, 15431559, doi:http://dx.doi.org/10.1175/2995.1.
  • Kain, J., and J. Fritsch (1993), Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteor. Monogr., 46, 165170.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40 year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Kohshima, S., N. Takeuchi, J. Uetake, T. Shiraiwa, R. Uemura, N. Yoshida, S. Matoba, and M. A. Godoi (2007), Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae, Global Planet. Change, 59, 236244.
  • Kondo, H., and T. Yamada (1988), Some remarks on the mass balance and the terminal-lateral fluctuations of San Rafael Glacier, the Northern Patagonia Icefield, Bull. Glacier Res., 6, 5563.
  • Koppes, M., H. Conway, L. A. Rasmussen, and M. Chernos (2011), Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, Northern Patagonia, 1950–2005, The Cryosphere, 5, 791808.
  • Lin, Y., S. Chiao, T. Wang, M. Kaplan, and R. Weglarz (2001), Some common ingredients for heavy orographic rainfall, Weather Forecast., 16, 633660.
  • López, P., and G. Casassa (2011), Recent acceleration of ice loss in the Northern Patagonia Icefield based on an updated decennial evolution, The Cryosphere Discuss., 5, 33233381.
  • Loriaux, T., and G. Casassa (2013), Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context, Global Planet. Change, 102, 3340.
  • López, P., P. Chevallier, V. Favier, B. Pouyaud, F. Ordenes, and J. Oerlemans (2010), A regional view of fluctuations in glacier length in southern South America, Global Planet. Change, 71, 85108.
  • Maas, H.-G., G. Casassa, D. Schneider, E. Schwalbe, and A. Wendt (2010), Photogrammetric determination of spatio-temporal velocity fields at Glaciar San Rafael in the Northern Patagonian Icefield, The Cryosphere Discuss., 4, 24152432.
  • Machguth, H., F. Paul, S. Kotlarski, and M. Hoelzle (2009), Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: A methodical description and interpretation of the results, J. Geophys. Res. Atmos., 114, D19106, doi:10.1029/2009JD011775.
  • Masiokas, M. H., A. Rivera, L. E. Espizua, R. Villalba, S. Delgado, and J. Carlos Aravena (2009), Glacier fluctuations in extratropical South America during the past 1000 years, Palaeogeogr. Palaeocl., 281, 242268.
  • Matsuoka, K., and R. Naruse (1999), Mass balance features derived from a firn core at Hielo Patagonico Norte, South America, Arct. Antarct. Alp. Res., 31, 333340.
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16,66316,682.
  • Nakajima C. (ed.) (1985), Glaciological Studies in Patagonia Northern Icefield, 11, Data Center for Glacier Research, Japanese Society of Snow and Ice, Nagoya.
  • Naruse, R., (1985), Flow of Soler Glacier and San Rafael Glacier, Tech. Rep., Data Center of Glacier Research, Japanese Society of Snow and Ice.
  • Naruse, R., P. Skvarca, and Y. Takeuchi (1997), Thinning and retreat of Glaciar Upsala, and an estimate of annual ablation changes in Southern Patagonia, Ann. Glaciol., 24, 3842.
  • Oerlemans, J. (2001), Glaciers and Climate Change, 48, A.A. Balkema Publishers, Lisse, Abingdon, Exton, Tokyo.
  • Ohata, T., H. Enomoto, and H. Kondo, (1985), Characteristic of ablation at San Rafael Glacier, Tech. Rep., Data Center of Glacier Research, Japanese Society of Snow and Ice.
  • Pandey, G., D. Cayan, and K. Georgakakos (1999), Precipitation structure in the Sierra Nevada of California during winter, J. Geophys. Res. Atmos., 104, 12,01912,030.
  • Peña, H., and F. Escobar (1987), Aspects of glacial hydrology in Patagonia, Bull. Glacier Res., 4, 141150.
  • Rasmussen, L. A., H. Conway, and C. F. Raymond (2007), Influence of upper air conditions on the Patagonia icefields, Global Planet. Change, 59, 203216.
  • Rignot, E., R. Foster, and B. Isacks (1996), Interferometric radar observations of Glaciar San Rafael, Chile, J. Glaciol., 42, 279291.
  • Rignot, E., A. Rivera, and G. Casassa (2003), Contribution of the Patagonia Icefields of South America to sea level rise, Science, 302, 434437.
  • Rivera, A. (2004), Mass balance investigations at Glaciar Chico, Southern Patagonia Icefield, Chile, Ph.D. thesis, University of Bristol.
  • Rivera, A., T. Benham, G. Casassa, J. Bamber, and J. A. Dowdeswell (2007), Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile, Global Planet. Change, 59, 126137.
  • Roe, G. (2005), Orographic precipitation, Annu. Rev. Earth Planet. Sci., 33, 645671.
  • Roeckner, E., et al., (2003), The atmospheric general circulation model ECHAM5 Part I, Tech. Rep., Max-Planck-Institut für Meteorologie.
  • Rosenblüth, B., G. Casassa, and H. Fuenzalida (1995), Recent climatic changes in western Patagonia, Bull. Glacier Res., 13, 127132.
  • Rott, H., M. Stuefer, A. Siegel, P. Skvarca, and A. Eckstaller (1998), Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield, Geophys. Res. Lett., 25, 14071410.
  • Schwikowski, M., S. Bruetsch, G. Casassa, and A. Rivera (2006), A potential high-elevation ice-core site at Hielo Patagonico Sur, Ann. Glaciol., 43, 813.
  • Shiraiwa, T., S. Kohshima, R. Uemura, N. Yoshida, S. Matoba, J. Uetake, and M. Godoi (2002), High net accumulation rates at Campo de Hielo Patagonico Sur, South America, revealed by analysis of a 45.97 m long ice core, Ann. Glaciol., 35, 8490.
  • Skamarock, W. C., and J. B. Klemp (2008), A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 34653485.
  • Smith, R. B. (1979), The influence of mountains on the atmosphere, Adv. Geophys., 21, 87230.
  • Sukoriansky, S., B. Galperin, and V. Perov (2005), Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice, Bound.-Lay. Meteorol., 117, 231257.
  • Takeuchi, Y., R. Naruse, and P. Skvarca (1996), Annual air-temperature measurement and ablation estimate at Moreno Glacier, Patagonia, Bull. Glacier Res., 14, 2328.
  • Themeßl, M. J., A. Gobiet, and A Leuprecht (2011), Empirical-statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 15301544.
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall (2008), Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 50955115.
  • Vimeux, F., M. de Angelis, P. Ginot, O. Magand, G. Casassa, B. Pouyaud, S. Falourd, and S. Johnsen (2008), A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Valentin (Northern Patagonia Icefield, Chile), J. Geophys. Res. Atmos., 113, D16118, doi:10.1029/2007JD009502.
  • Warren, C., N. Glasser, S. Harrison, V. Winchester, A. Kerr, and A. Rivera (1995), Characteristics of tide-water calving at Glaciar San-Rafael, Chile, J. Glaciol., 41, 273289.
  • Warren, C., D. Benn, V. Winchester, and S. Harrison (2001), Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia, J. Glaciol., 47, 135146.
  • Wilby, R., and T. Wigley (1997), Downscaling general circulation model output: A review of methods and limitations, Prog. Phys. Geog., 21, 530548.
  • Wilks, D. (2006), Statistical Methods in the Atmospheric Sciences, Second Edition (International Geophysics), 215300, Chapter 7, Academic Press, Oxford, Amsterdam, Waltham, San Diego.
  • Willis, M. J., K. Melkonian, M. Pritchard, and J. Ramage (2012), Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing, Remote Sens. Environ., 117, 184198.
  • Wratt, D., M. Revell, M. Sinclair, W. Gray, R. Henderson, and A. Chater (2000), Relationships between air mass properties and mesoscale rainfall in New Zealand's Southern Alps, Atmos. Res., 52, 261282.
  • Yamada, T. (1987), Glaciological characteristics revealed by 37.6-m deep core drilled at the accumulation area of San Rafael Glacier, the Northern Patagonia Icefield, Bull. Glacier Res., 4, 5967.