SEARCH

SEARCH BY CITATION

References

  • Anderson, R. S., and N. F. Humphrey (1989), Interaction of weathering and transport processes in the evolution of arid landscapes, in Quantitative Dynamic Stratigraphy, edited by T. A. Cross, pp. 349361, Prentice Hall, Englewood Cliffs, New Jersey.
  • Andrews, D. J., and R. C. Bucknam (1987), Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12,85712,867.
  • Asner, G. P., J. Mascaro, H. C. Muller-Landau, G. Vieilledent, R. Vaudry, M. Rasamoelina, J. S. Hall, and M. van Breugel (2012), A universal airborne LiDAR approach for tropical forest carbon mapping, Oecologia, 168, 11471160.
  • Briggs, J. C., and C. J. Humphries (2004), Early classics, in Foundations of Biogeography: Classic Papers with Commentaries, edited by Lomolino, M. V., and J. H. Brown, pp. 513, University of Chicago Press, Chicago.
  • Brown, J. H., and D. F. Sax (2004), Gradients in species diversity: Why are there so many species in the Tropics? in Foundations of Biogeography: Classic Papers with Commentaries, edited by Lomolino, M. V., and J. H. Brown, pp. 11451154, University of Chicago Press, Chicago.
  • Chorover J. et al. (2011), How Water, Carbon, and Energy Drive Critical Zone Evolution: The Jemez-Santa Catalina Critical Zone Observatory, Vadose Zone J., 10(3), 884899.
  • Crouvi, O., J. D. Pelletier, and C. Rasmussen (2013), Predicting soil thickness and the fraction of soil derived from aeolian sediments in upland watersheds of the Mojave Desert, Geoderma, 195-196C, 94110.
  • Culling, W. E. H. (1960), Analytical theory of erosion, J. Geol., 68, 336344.
  • Culling, W. E. H. (1963), Soil creep and the development of hillside slopes, J. Geol., 71, 127161.
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson and P. Pasteris (2002), A knowledge-based approach to the statistical mapping of climate, Clim. Res., 22, 99113.
  • Davis, G. H., K. N. Constenius, W. R. Dickinson, E. P. Rodriguez, and L. J. Cox (2004), Fault and fault-rock characteristics associated with Cenozoic extension and core-complex evolution in the Catalina-Rincon region, southeastern Arizona, Geol. Soc. Am. Bull., 116, 128141.
  • Dickinson, W. R. (1991), Tectonic setting of faulted Tertiary strata associated with the Catalina core complex in southern Arizona, Geol. Soc. Am. Spec. Pap. 264, Boulder, Colorado, 106 p.
  • Dunne, T., D. V. Malmon, and S. M. Mudd (2010), A rain splash transport equation assimilating field and laboratory measurements, J. Geophys. Res., 115, F01001, doi:10.1029/2009JF001302.
  • Etheredge, D., D. S. Gutzler, and F. J. Pazzaglia (2004), Geomorphic response to seasonal variations in rainfall in the Southwest United States, Geol. Soc. Am. Bull., 116, 606618.
  • Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heimsath (2009), Statistical description of slope-dependent soil transport and the diffusion-like coefficient, J. Geophys. Res., 114, F00A05, doi:10.1029/2009JF001267.
  • Gabet, E. J., O. J. Reichman, and E. W. Seabloom (2003), The effects of bioturbation on soil processes and sediment transport, Ann. Rev. Earth Planet. Sci., 31, 24273.
  • Hanks, T. C. (2000), The age of scarplike landforms from diffusion-equation analysis, in Quaternary Geochronology: Methods and Applications, edited by J. S. Noller, J. M. Sowers and W. R. Lettis, pp. 313338, American Geophysical Union, Washington D.C.
  • Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, and R. C. Finkel (1997), The soil production function and landscape equilibrium, Nature, 388, 358361.
  • Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, and R. C. Finkel (2001), Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Proc. Landf., 26, 531552.
  • Heimsath, A. M., D. J. Furbish, and W. E. Dietrich (2005), The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology, 33, 949952, doi: 10.1130/G21868.1.
  • Heimsath, A. M., G. R. Hancock, and D. Fink (2009), The “humped” soil production function: Eroding Arnhem Land, Australia, Earth Surf. Processes and Landforms, 34, 16741684.
  • Heimsath, A. M., R. A. Dibiase, and K. X. Whipple (2012), Soil production limits and the transition to bedrock-dominated landscapes, Nature Geosci., 5, 210214.
  • Hughes, M., P. Almond, and J. Roering (2009), Increased sediment transport via bioturbation at the last glacial-interglacial transition, Geology, 37, 919922.
  • IAEA (2004), Isotope Hydrology Information System, The ISOHIS database Available online at http://isohis.iaea.org.
  • Istanbulluoglu, E., and R. L. Bras (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, J. Geophys. Res., 110, F02012, doi:10.1029/2004JF000249.
  • Langbein, W. B., and Schumm, S. A. (1958) Yield of sediment in relation to mean annual precipitation. Trans. Amer. Geophys. Un. 39, 10761084.
  • Lebedeva, M. I., R. C. Fletcher, and S. L. Brantley (2010), A mathematical model for steady-state regolith production at constant erosion rate, Earth Surf. Proc. Landf., 35(5), 508524.
  • Leopold, L. B. and T. Maddock Jr. (1953), The hydraulic geometry of stream channels and some physiographic implications, U.S. Geological Survey Professional Paper 252, Reston, Virginia, 57 pp.
  • Lybrand R., C. Rasmussen, A. Jardine, P. A. Troch, and J. Chorover (2011), The effects of climate and landscape position on chemical denudation and mineral transformation in the Santa Catalina mountain critical zone observatory, Appl. Geochem., 26(S), S80S84.
  • McIntosh, R. P. (1986), The Background of Ecology: Concepts and Theory, Cambridge University Press, New York, New York.
  • Merriam, C. H. (1890), Results of a biological survey of the San Francisco Mountains region and desert of the Little Colorado in Arizona, Department of Agriculture, Div. Ornithology and Mammalogy, N. Am. Fauna, 3, 1136.
  • Minasny, B., and A. B. McBratney (1999), A rudimentary mechanistic model for soil production and landscape development, Geoderma, 90(1–2), 321.
  • Montgomery, D. R., and W. E. Dietrich (1988), Where do channels begin? Nature, 336, 232234.
  • Oguchi, T. (1997), Drainage density and relative relief in humid steep mountains with frequent slope failure, Earth Surf. Processes and Landforms, 22, 107120.
  • Pelletier, J. D. (2010a), How do pediments form? A numerical modeling investigation with comparison to pediments in southern Arizona, USA, Geol. Soc. Am. Bull., 122, 18151829.
  • Pelletier, J. D. (2010b), Minimizing the grid-resolution dependence of flow-routing algorithms for geomorphic applications, Geomorphology, 122, 9198.
  • Pelletier, J. D. (2013), A robust two-parameter method for drainage network extraction from high-resolution DEMs: Evaluation using synthetic and real-world DEMs, Water Resour. Res., doi:10.1029/2012WR012452.
  • Pelletier, J. D., and C. Rasmussen (2009a), Quantifying the climatic and tectonic controls on hillslope steepness and erosion rate, Lithosphere, 1, 7380.
  • Pelletier, J. D., and C. Rasmussen (2009b), Geomorphically-based predictive mapping of soil thickness in upland watersheds, Water Resour. Res., 45, W09417, doi:10.1029/2008WR007319.
  • Pelletier, J. D. et al. (2011), Calibration and testing of upland hillslope evolution models in a dated landscape: Banco Bonito, New Mexico, J. Geophys. Res., 116, F04004, doi:10.1029/2011JF001976.
  • Perron, J. T. (2011), Numerical methods for nonlinear hillslope transport laws, J. Geophys. Res., 116, F02021, doi:10.1029/2010JF001801.
  • Perron, J. T., W. E. Dietrich, and J. W. Kirchner (2008), Controls on the spacing of first-order valleys, J. Geophys. Res., 113, F04016, doi:10.1029/2007JF000977.
  • Rasmussen, C. (2008), Mass balance of carbon cycling and mineral weathering across a semiarid environmental gradient, Geochim. Cosmochim. Acta, 72, A778.
  • Rasmussen, C., and N. Tabor (2007), Application of a quantitative pedogenic energy model to predict soil development across a range of environmental gradients, Soil Sci. Soc. Am. J., 71(5), 17191729.
  • Rasmussen, C., R. J. Southard, and W. R. Horwath (2005), Modeling energy inputs to predict pedogenic environments using regional environmental databases, Soil Sci. Soc. Am. J., 69(4), 12661274.
  • Rasmussen C., P. A. Troch, J. Chorover, P. D. Brooks, J. D. Pelletier, and T. A. Huxman (2011), An open system framework for integrating critical zone structure and function, Biogeochemistry, 102, 1529.
  • Riebe, C. S., J. W. Kirchner, and R. C. Finkel (2004), Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Plan. Sci. Lett., 224(3–4), 547562.
  • Roering, J. J. (2008), How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data, Geol. Soc. Am. Bull., 120, 12481262.
  • Roering, J. J., J. W. Kirchner, and W. E. Dietrich (1999), Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35(3), 853870.
  • Roering, J. J., P. Almond, P. Tonkin, and J. McKean (2004), Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: Application to loess-mantled hillslopes, Charwell River, South Island, New Zealand, J. Geophys. Res., 109, F01010, doi: 10.1029/2003JF000034.
  • Spencer, J. E., and S. J. Reynolds (1989), Middle Tertiary tectonics of Arizona and adjacent areas, in Jenney, J.P., and Reynolds, S.J., eds., Geologic Evolution of Arizona, Ariz. Geolog. Soc. Digest, 17, pp. 539573.
  • Strudley, M. W., A. B. Murray, and P. K. Haff (2006), Regolith-thickness instability and the formation of tors in arid environments, J. Geophys. Res., 111, F03010, doi:10.1029/2005JF000405.
  • Tucker, G. E., and R. L. Bras (1998), Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34(10), 27512764, doi:10.1029/98WR01474.
  • Tucker, G. E., F. Catani, A. Rinaldo, and R. L. Bras (2001), Statistical analysis of drainage density from digital terrain data, Geomorphology, 36, 187202.
  • Tucker, G. E., L. J. Arnold, R. L. Bras, H. Flores, E. Istanbulluoglu, and P. Sólyom (2006), Headwater channel dynamics in semi-arid rangelands, Colorado high plains, USA, Geol. Soc. Am. Bull., 118, 959974.
  • Van Devender, T. R. (1990), Late Quaternary vegetation and climate of the Sonoran Desert, United States and Mexico, in Packrat middens: the last 40,000 years of biotic change, edited by Betancourt, J. L., T. R. Van Devender, and P. S. Martin, pp. 134165, The University of Arizona Press, Tucson, Arizona.
  • Walther, S. C., J. J. Roering, P. C. Almond, and M. W. Hughes (2009), Long-term biogenic soil mixing and transport in a hilly, loess-mantled landscape: Blue Mountains of southeastern Washington, Catena, 79, 170178.
  • Wilson, L. (1973), Variations in mean annual sediment yield as a function of mean annual precipitation, Am. J. Sci., 273, 335349.
  • Whittaker, R. H., and W. A. Niering (1975), Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, Production, and Diversity along the Elevation Gradient, Ecology 56, 771790.
  • Wilkinson, M. T., and G. S. Humphreys (2005), Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates, Aust. J. Soil Res., 43, 767779.
  • Yang, X., G. A. Tang, C. C. Xiao and F. D. Deng (2007), Terrain revised model for air temperature in mountainous area based on DEMs: A case study in Yaoxian county, J. Geogr. Sci., 17, 399408.
  • Yetemen, O., E. Istanbulluoglu, and E. R. Vivoni (2010), The implications of geology, soils, and vegetation on landscape morphology: Inferences from semi-arid basins with complex vegetation patterns in Central New Mexico, USA, Geomorphology, 116, 246263.
  • Yoo, K., and S. M. Mudd (2008), Toward process-based modeling of geochemical soil formation across diverse landforms: A new mathematical framework, Geoderma, 146, 248260.