Experimental study on coarse grain saltation dynamics in bedrock channels



[1] Saltation of bed load particles on bedrock surfaces is important for landscape evolution and bedrock incision in steep landscapes. However, few studies have investigated saltation in bedrock channels where, unlike alluvial channels, the bed roughness height and the sediment size may be independent. To address this data gap, we measured the saltation hop height, hop length, and velocity of gravel saltating over a planar bed using 80–160 readings from high-speed photography and direct measurements. Two separate dimensional analyses are used: one leading to a bed shear stress scaling and another leading to a Froude number (Fr) scaling. Our new saltation data coupled with numerous data from previous studies suggest that both shear stress and Fr-scaling analyses are valid in characterizing bed load saltation dynamics with bed roughness ranging from smooth to alluvial beds. However, the Fr approach has the advantages that (1) there is no need to estimate a critical Shields stress math formula, which alone can vary up to 2 orders of magnitude (e.g., 0.001–0.1) due to changes in relative bed roughness and slope and (2) the Fr-based scaling fits the saltation data set better in a least squares sense. Results show that the saltation velocity of bed load is independent of grain density and grain size and is linearly proportional to flow velocity. Saltation height has a nonlinear dependence on grain size. Saltation length increases primarily with flow velocity, and it is inversely proportional to submerged specific density. Our results suggest that either math formula or bed roughness coefficient must be properly estimated to yield accurate results in saltation-abrasion models.