SEARCH

SEARCH BY CITATION

Keywords:

  • Thermokarst;
  • Hydrology;
  • Fluvial regime;
  • Thaw slump;
  • Geochemistry;
  • Environmental change

Abstract

[1] Ice-cored permafrost landscapes are highly sensitive to disturbance and have the potential to undergo dramatic geomorphic transformations in response to climate change. The acceleration of thermokarst activity in the lower Mackenzie and Peel River watersheds of northwestern Canada has led to the development of large permafrost thaw slumps and caused major impacts to fluvial systems. Individual “mega slumps” have thawed up to 106 m3of ice-rich permafrost. The widespread development of these large thaw slumps (up to 40 ha area with headwalls of up to 25 m height) and associated debris flows drive distinct patterns of stream sediment and solute flux that are evident across a range of watershed scales. Suspended sediment and solute concentrations in impacted streams were several orders of magnitude greater than in unaffected streams. In summer, slump impacted streams displayed diurnal fluctuations in water levels and solute and sediment flux driven entirely by ground-ice thaw. Turbidity in these streams varied diurnally by up to an order of magnitude and followed the patterns of net radiation and ground-ice ablation in mega slumps. These diurnal patterns were discernible at the 103 km2 catchment scale, and regional disturbance inventories indicate that hundreds of watersheds are already influenced by slumping. The broad scale impacts of accelerated slumping are indicated by a significant increase in solute concentrations in the Peel River (70,000 km2). These observations illustrate the nature and magnitude of hydrogeomorphic changes that can be expected as glaciogenic landscapes underlain by massive ice adjust to a rapidly changing climate.