SEARCH

SEARCH BY CITATION

References

  • Bader, H., R. Haefeli, E. Bucher, J. Neher, O. Eckel, C. Thams, and P. Niggli (1954), Snow and its metamorphism (Der Schnee und Seine Metamorphose). Snow Ice and Permafrost Research Establishment, U.S. Army Corps of Engineers, Wilmette Ill., SIPRE translation 14.
  • Bažant, Z. (1995), Scaling theories for quasibrittle fracture: Recent advances and new directions, in Proceedings, 2nd International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS2, edited by F. Wittmann, pp. 515534, AEDIFICATIO Publishers, Freiburg.
  • Bažant, Z. P. (1984), Size effect in blunt fracture—concrete, rock, metal, J. Eng. Mech. - ASCE, 110(4), 518535.
  • Bažant, Z. P. (2005), Scaling of Structural Strength, 2nd ed., 336 pp., Butterworth-Heinemann, Oxford.
  • Bažant, Z. P., and R. Gettu (1992), Rate effects and load relaxation in static fracture of concrete, ACI Mater. J., 89(5), 456468.
  • Bažant, Z. P., and M. T. Kazemi (1990), Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete, Int. J. Fract., 44(2), 111131.
  • Bažant, Z. P., and Z. Li (1995), Modulus of rupture: Size effect due to fracture initiation in boundary layer, J. Struct. Eng., 121(4), 739746.
  • Bažant, Z. P., and Z. Li (1996), Zero-brittleness size-effect method for one-size fracture test of concrete, J. Eng. Mech. - ASCE, 122(5), 458468.
  • Bažant, Z. P., and J. Planas (1998), Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton.
  • Bažant, Z. P., M. Vořechovský, and D. Novák (2007), Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions, J. Eng. Mech. - ASCE, 133, 153162, doi:10.1061/(ASCE)0733-9399(2007)133:2(153).
  • Borstad, C. P. (2011), Tensile strength and fracture mechanics of cohesive dry snow related to slab avalanches, Ph.D. thesis. University of British Columbia, Vancouver, B.C. Canada.
  • Borstad, C. P., and D. M. McClung (2009), Size effect in dry snow slab tensile fracture, in Proceedings of the 12th International Conference on Fracture, 10 pp., Ottawa, Ontario Canada.
  • Borstad, C. P., and D. M. McClung (2011a), Numerical modeling of tensile fracture initiation and propagation in snow slabs using nonlocal damage mechanics, Cold Reg. Sci. Technol., 69, 145155, doi:10.1016/j.coldregions.2011.09.010.
  • Borstad, C. P., and D. M. McClung (2011b), Thin-blade penetration resistance and snow strength, J. Glaciol., 57, 325336, doi:10.3189/002214311796405924.
  • Brown, R. L., and T. E. Lang (1975), On the fracture properties of snow, in Proceedings of the International Symposium on Snow Mechanics, vol. 114, pp. 196207, IAHS Publication, Grindelwald.
  • Camponovo, C., and J. Schweizer (2001), Rheological measurements of the viscoelastic properties of snow, Ann. Glaciol., 32, 4450.
  • Canadian Avalanche Association (CAA) (2007), Observational guidelines and recording standards for weather, snowpack and avalanches.
  • Cotterell, B., and Y. W. Mai (1996), Fracture Mechanics of Cementitious Materials, Chapman & Hall, London.
  • Dempsey, J. P., R. M. Adamson, and S. V. Mulmule (1999), Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at resolute, NWT, Int. J. Fract., 95(1-4), 347366.
  • Fierz, C., R. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. McClung, K. Nishimura, P. Satyawali, and S. Sokratov (2009), The International classification for seasonal snow on the ground, IHP-VII Technical Documents in Hydrology 83. UNESCO-IHP, Paris, IACS Contribution No. 1.
  • Fukue, M. (1977), Mechanical performance of snow under loading, Ph.D. thesis. McGill University, Montreal, Quebec, Canada.
  • Gauthier, D., and B. Jamieson (2008), Fracture propagation propensity in relation to snow slab avalanche release: Validating the propagation saw test, Geophys. Res. Lett., 35, L13,501, doi:10.1029/2008GL034245.
  • Kirchner, H. O. K., G. Michot, and T. Suzuki (2000), Fracture toughness of snow in tension, Philos. Mag. A - Phys. Condens. Matter Struct. Defects, 80(5), 12651272.
  • Marshall, H. P., and J. B. Johnson (2009), Accurate inversion of high-resolution snow penetrometer signals for microstructural and micromechanical properties, J. Geophys. Res. - Earth Surf., 114, F04016, doi:10.1029/2009JF001269.
  • McClung, D., and C. Borstad (2012), Probability distribution of energetic-statistical strength size effect in alpine snow, Probab. Eng. Mech., 29, 5363, doi:10.1016/j.probengmech.2011.08.009.
  • McClung, D., and P. Schaerer (2006), The Avalanche Handbook, 3rd ed., The Mountaineers, Seattle, WA.
  • McClung, D. M. (1981), Fracture mechanical models of dry slab avalanche release, J. Geophys. Res., 86(B11), 10,78310,790.
  • McClung, D. M. (2007), Fracture energy applicable to dry snow slab avalanche release, Geophys. Res. Lett., 34, doi:10.1029/2006GL028238.
  • McClung, D. M. (2009a), Dimensions of dry snow slab avalanches from field measurements, J. Geophys. Res. - Earth Surf., 114, F01006, doi:10.1029/2007JF000941.
  • McClung, D. M. (2009b), Dry snow slab quasi-brittle fracture initiation and verification from field tests, J. Geophys. Res. - Earth Surf., 114, F01022, doi:10.1029/2007JF000913.
  • McClung, D. M., and J. Schweizer (2006), Fracture toughness of dry snow slab avalanches from field measurements, J. Geophys. Res., 111, F04008, doi:10.1029/2005JF000403.
  • Mellor, M., and J. H. Smith (1996), Strength studies of snow, in International Symposium on Scientific Aspects of Snow and Ice Avalanches, IAHS Publication No. 69, pp. 100113, Reports and Discussions.
  • Mindess, S. (1991), The fracture process zone in concrete, in Toughening Mechanisms in Quasi-brittle Materials, edited by S. P. Shah, 271286, Kluwer Academic Publishers, Dordrecht.
  • Nakamura, T., O. Abe, R. Hashimoto, and T. Ohta (2010), A dynamic method to measure the shear strength of snow, J. Glaciol., 56, 333338, doi:10.3189/002214310791968502.
  • Narita, H. (1980), Mechanical behavior and structure of snow under uniaxial tensile stress, J. Glaciol., 26(94), 275282.
  • Perla, R. (1977), Slab avalanche measurements, Can. Geotech. J., 14(2), 206213.
  • Pralong, A., and M. Funk (2005), Dynamic damage model of crevasse opening and application to glacier calving, J. Geophys. Res., 110, B01309, doi:10.1029/2004JB003104.
  • Salm, B. (1971), On the rheological behavior of snow under high stresses, Contrib. Inst. Low Temp. Sci., 23, 143.
  • Schweizer, J., J. B. Jamieson, and M. Schneebeli (2003), Snow avalanche formation, Rev. Geophys., 41(4), 1016, doi:10.1029/2002RG000123.
  • Schweizer, J., G. Michot, and H. Kirchner (2004), On thefracture toughness of snow, Ann. Glaciol., 38, 18.
  • Shapiro, L. H., J. B. Johnson, M. Sturm, and G. L. Blaisdell (1997), Snow mechanics: Review of the state of knowledge and applications, Tech. Rep. 97-3. Cold Regions Research and Engineering Laboratory.
  • Shinojima, K. (1966), Study on the visco-elastic deformation of deposited snow, in Physics of Snow and Ice: International Conference on Low Temperature Science, vol. 1, part 2, edited by H. Oura, pp. 875907, Institute of Low Temperature Science, Hokkaido University, Sapporo.
  • Sigrist, C. (2006), Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D. thesis. Swiss Federal Institute of Technology, Zurich.
  • Sigrist, C., and J. Schweizer (2007), Critical energy release rates of weak snowpack layers determined in field experiments, Geophys. Res. Lett., 34, L03,502, doi:10.1029/2006GL028576.
  • Sigrist, C., J. Schweizer, H. J. Schindler, and J. Dual (2005), On size and shape effects in snow fracture toughness measurements, Cold Reg. Sci. Technol., 43, 2435., doi:10.1016/j.coldregions.2005.05.001.
  • Tada, H., P. C. Paris, and G. R. Irwin (2000), The Stress Analysis of Cracks Handbook, 3rd ed., The American Society of Mechanical Engineers (ASME) Press, New York.
  • Tang, T., Z. P. Bažant, S. Yang, and D. Zollinger (1996), Variable-notch one-size test method for fracture energy and process zone length, Eng. Fract. Mech., 55(3), 383404.
  • Tang, T., S. Yang, and D. G. Zollinger (1999), Determination of fracture energy and process zone length using variable-notch one-size specimens, ACI Mater. J., 96(1), 310.
  • Timoshenko, S. (1940), Strength of Materials, 2nd ed., D. Van Nostrand Co., N.Y.
  • Xu, X., G. Jeronimidis, A. G. Atkins, and P. A. Trusty (2004), Rate-dependent fracture toughness of pure polycrystalline ice, J. Mater. Sci., 39, 225233, doi:10.1023/B:JMSC.0000007748.36956.a.