SEARCH

SEARCH BY CITATION

References

  • Altor, A. E., and W. J. Mitsch (2008), Pulsing hydrology, methane emissions and carbon dioxide fluxes in created marshes: A 2-year ecosystem study, Wetlands, 28, doi:10.1672/07-98.1.
  • Badiou, P., R. McDougal, D. Pennock, and B. Clark (2011), Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region, Wetl. Ecol. Manag., 19, doi:10.1007/s11273-011-9214-6.
  • Beven, K., and M. J. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 4369, doi:10.1080/02626667909491834.
  • Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin (2006), The carbon balance of North American wetlands, Wetlands, 26, doi:10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2.
  • Brye, K. R., and E. E. Gbur (2010), Regional differences in soil carbon and nitrogen storage as affected by land use and soil moisture regime, Soil Sci., 175, doi:10.1097/SS.0b013e3181e83db2.
  • Carlyle, S. A. (2006), Changing nature of topographic control on surface soil moisture of prairie pothole complexes along a climate gradient, MSc Thesis, Dep. of Geog., Univ. of Western Ontario, London, Ontario, Canada.
  • Chapuis-Lardy, L., N. Wrage, A. Metay, J.-L. Chottes, and M. Bernoux (2007), Soils, a sink for N2O? A review, Global Change Biol., 13, doi:10.1111/j.1365-2486.2006.01280.x.
  • Corre, M. D., D. J. Pennock, C. Van Kessel, and D. K. Elliott (1999), Estimation of annual nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada, Biogeochemistry, 44, 2949, doi:10.1007/BF00992997.
  • Creed, I. F., and G. Z. Sass (2011), Digital terrain analysis approaches for tracking hydrological and biogeochemical pathways and processes in forested landscapes, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, edited by D. F. Levia, D. E. Carlyle-Moses, T. Tanaka, pp. 69100, Springer-Verlag, Heidelberg, Germany, doi:10.1007/978-94-007-1363-5_4.
  • Dunmola, A. S., M. Tenuta, A. P. Moulin, P. Yapa, and D. A. Lobb (2010), Pattern of greenhouse gas emission from a Prairie Pothole agricultural landscape in Manitoba, Canada, Can. J. Soil Sci., 90, doi:10.4141/CJSS08053.
  • Environment Canada (1986), Wetlands in Canada: A valuable resource. Fact Sheet 86–4, 8pp, Lands Directorate, Ottawa, Ontario.
  • Euliss, N. H., R. A. Gleason, A. Olness, R. L. McDougal, H. R. Murkin, R. D. Robarts, R. A. Bourbonniere, and B. G. Warner (2006), North American prairie wetlands are important nonforested land-based carbon storage sites, Sci. Total Environ., 361, doi:10.1016/j.scitotenv.2005.06.007.
  • Forster, P. et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, pp. 129204, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Fung, K. I. (1969a), Bedrock geology. In Atlas of Saskatchewan, edited by J. H. Richards and K. Fung, pp. 4041. University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Fung, K. I. (1969b) Natural vegetation. In Atlas of Saskatchewan, edited by J. H. Richards, p. 263. University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Gala, T. S., D. A. Aldred, S. Carlyle, and I. F. Creed (2011), Topographically based spatially averaging of SAR data improves performance of soil moisture models. Remote Sens. Environ., 115, doi:10.1016/j.rse.2011.08.013.
  • Gleason, R. A., B. A. Tangen, B. A. Browne, and N. H. Euliss (2009), Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region, Soil Biol. Biochem., 41, doi:10.1016/j.soilbio.2009.09.008.
  • Hamon, W. R. (1961), Estimating potential evapotranspiration, J. Hydraulics. Div.-ASCE, 87.
  • Johnson, W. C., B. Werner, G. R. Guntenspergen, R. A. Voldseth, B. Millett, D. E. Naugle, M. Tulbure, R. W. H. Carroll, J. Tracy, and C. Olawsky (2010), Prairie wetland complexes as landscape functional units in a changing climate, Bioscience, 60, doi:10.1525/bio.2010.60.2.7.
  • Kaheil, Y. H., and I. F. Creed (2009), Detecting and downscaling wet areas on boreal landscapes. IEEE Geosci. Remote S., 6, doi:10.1109/LGRS.2008.2010001.
  • van der Kamp, G., and M. Hayashi (2009), Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America, Hydrogeol. J., 17, doi:10.1007/s10040-008-0367-1.
  • Lindsay, J. B (2005), The Terrain Analysis System: A tool for hydro-geomorphic applications, Hydrol. Process, 19, doi:10.1002/hyp.5818.
  • Livingston G. P., and G. L. Hutchinson (1995), Enclosure-based measurement of trace gas exchange: Applications and sources of error, in Biogenic Trace Gases: Measuring Emissions from Soil and Water, edited by P. A. Matson and R. C. Harris, pp. 1451, Blackwell Science Inc., Cambridge, MA, USA.
  • MacMillan, R. A (2000), A protocol for preparing digital elevation (DEM) data for input and analysis using the landform segmentation model (LSM) programs, Soil Variability Analysis to Enhance Crop Production (SVAECP) Project.
  • Matson, A., D. Pennock, and A. Bedard-Haughn (2009), Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada, For. Ecol. Manag., 258, doi:10.1016/j.foreco.2009.05.034.
  • McClain, M. E., et al. (2003), Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6, doi:10.1007/s10021-003-0161-9.
  • Millett, B., W. C. Johnson, and G. Guntenspergen (2009), Climate trends of the North American prairie pothole region 1906–2000, Clim. Chang., 93, 243267, doi:10.1007/s10584-008-9543-5.
  • Mitsch, W. J., and J. G. Gosselink (2000), Wetlands—3rd Ed., John Wiley & Sons, New York.
  • Nelson, J. D. J., J. J. Schoenau, and S. S. Malhi (2008), Soil organic carbon changes and distribution in cultivated and restored grassland soils in Saskatchewan, Nutr. Cycl. Agroecosys., 82, doi:10.1007/s10705-008-9175-1.
  • Niemuth, N. D., B. Wangler, and R. E. Reynolds (2010), Spatial and temporal variation in wet area of wetlands in the Prairie Pothole Region of North Dakota and South Dakota, Wetlands, 30, doi:10.1007/s13157-010-0111-1.
  • O'Callaghan, J. F., and D. M. Mark (1984), The extraction of drainage networks from digital elevation data, Comput. Vision Graph., 28, 323344, doi:10.1016/S0734-189X(84)80011-0.
  • Pennock, D. (2007), The Agriculture and Wetlands Greenhouse Gas Initiative (AWGI): Overview of Projects Within the Initiative and Research Summary, Ducks Unlimited Canada—Institute for Wetlands and Waterfowl Research, Stonewall, MB, Canada, 16pp.
  • Pennock, D. J., B. J. Zebarth, and E. Dejong (1987), Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada, Geoderma, 40, 297315, doi:10.1016/0016-7061(87)90040-1.
  • Pennock, D., T. Yates, A. Bedard-Haughn, K. Phipps, R. Farrell, and R. McDougal (2010), Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region, Geoderma, 155, doi:10.1016/j.geoderma.2009.12.015.
  • Phillips, R., and O. Beeri (2008), The role of hydropedologic vegetation zones in greenhouse gas emissions for agricultural wetland landscapes, Catena, 72, doi:10.1016/j.catena.2007.07.007.
  • Phipps, K. J. (2006), Spatial and temporal variation in greenhouse gas emissions from two open water prairie wetlands, MSc Thesis, Dep. of Soil Sci., Univ. of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Planchon, O., and F. Darboux (2002), A fast, simple and versatile algorithm to fill the depressions of digital elevation models, Catena, 46, doi:10.1016/S0341-8162(01)00164-3.
  • Sass, G. Z., and I. F. Creed (2011), Bird's eye view of forest hydrology: Novel approaches using remote sensing techniques, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, edited by D. F. Levia, D. E. Carlyle-Moses, T. Tanaka, pp. 4568, Springer-Verlag, Heidelberg, Germany, doi:10.1007/978-94-007-1363-5_3.
  • Scott, G. A. J. (1995), Canada's Vegetation: A World Perspective, 361 pp., McGill-Queen's University Press, Montreal.
  • Shieflo, J. B. (1968), Evapotranspiration and the Water Budget of Prairie Potholes in North Dakota, Paper 585-B, US Geological Survey, Reston, Virginia.
  • Soil Landscapes of Canada Working Group (2010), Soil landscapes of Canada version 3.2. Agriculture and Agri-Food Canada. (digital map and database at 1:1 million scale).
  • Systat Software Inc. (2011), SigmaPlot, Version 12.0 for Windows.
  • Tang, J., and D. D. Baldocchi (2005), Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components, Biochemistry, 73, doi:10.1007/s10533-004-5889-6.
  • Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33, 309319, doi:10.1029/96WR03137.
  • Tiner, R. W. (2003), Geographically isolated wetlands of the United States, Wetlands, 23, doi:10.1672/0277-5212(2003)023[0494:GIWOTU]2.0.CO;2.
  • van der Valk, A. G., and R. L. Pederson (2003), The SWANCC decision and its implications for prairie potholes, Wetlands, 23, doi:10.1672/0277-5212(2003)023[0590:TSDAII]2.0.CO;2.
  • Waiser, M. J. (2006), Relationship between hydrologic characteristics and dissolved organic carbon concentration and mass in northern prairie wetlands using a conservative tracer approach, J. Geophys. Res.-Biogeo., 111, G02024, doi:10.1029/2005JG000088.
  • Webster, K. L., I. F. Creed, F. D. Beall, and R. A. Bourbonniere (2008), Controls on the heterogeneity of soil respiration in a tolerant hardwood forest, J. Geophys. Res.-Biogeo., 113, G03040, doi:10.1029/2008JG000706.
  • Webster, K. L., I. F. Creed, M. D. Skowronski, and Y. H. Kaheil (2009), Comparison of the performance of statistical models that predict soil respiration from forests, Soil Sci. Soc. Am. J., 73, doi:10.2136/sssaj2008.0310.
  • Webster, K. L., I. F. Creed, F. D. Beall, and R. A. Bourbonniere (2011), A topographic template for estimating soil carbon pools in forested landscapes, Geoderma, 160, doi:10.1016/j.geoderma.2010.10.016.
  • Wilson, J., and J. C. Gallant (2000), Terrain Analysis: Principles and Applications, Wiley, New York.
  • Winter, T. C., and J. W. LaBaugh (2003), Hydrologic considerations in defining isolated wetlands, Wetlands, 23, doi:10.1672/0277-5212(2003)023[0532:HCIDIW]2.0.CO;2.
  • Winter, T. C., and D. O. Rosenberry (1998), Hydrology of prairie pothole wetlands during drought and deluge: A 17-year study of the cottonwood lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrologic records, Clim. Chang., 40, 189209, doi:10.1023/A:1005448416571.
  • Yates, T. T., B. C. Si, R. E. Farrell, and D. J. Pennock (2006), Probability distribution and spatial dependence of nitrous oxide emission: Temporal change in hummocky terrain, Soil Sci. Soc. Am. J., 70, doi:10.2136/sssaj2005.0214.
  • Zha, T. S., A. G. Barr, G. van der Kamp, T. A. Black, J. H. McCaughey, and L. B. Flanagan (2010), Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought, Ag. For. Meteorol., 150, doi:10.1016/j.agrformet.2010.08.003.