SEARCH

SEARCH BY CITATION

References

  • Baggs, E. M. (2011), Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future directions, Curr. Opin. Environ. Sustainability, 3, 321327.
  • Blake, G. R., and K. H. Hartge (1994), Bulk density, in Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, 2nd ed., chap. 13, pp. 363375, Soil Sci. Soc. of Am., Madison, Wisc., Madison, Wisconsin, USA.
  • Bouwman, A. F., and L. J. M. Boumans (2002), Modeling global annual N2O and NO emissions from fertilized fields, Global Biogeochem. Cycles, 16(4), 1080, doi:10.1029/2001GB001812.
  • Bouwman, A., et al. (1995), Uncertainties in the global source distribution of nitrous oxide, J. Geophys. Res., 100(D2), 27852800.
  • Bouwman, A., et al. (2002), Emissions of N2O and NO from fertilized fields: Summary of available measurement data, Global Biogeochem. Cycles, 16(4), 1058, doi:10.1029/2001GB001811.
  • Bouwman, L., K. K. Goldewijk, K. W. V. D. Hoek, A. H. W. Beusen, D. P. V. Vuuren, J. Willems, M. C. Rufino, and E. Stehfest (2011), Exploring global changes in nitrogen and phosphorous cycles in agriculture induced by livestock production over the 1900–2050 period, Proceedings of the National Academy of Science of the United States (PNAS), Early Edition (May 16, 2011), 1–6.
  • Cárdenas, L., et al. (1993), Effects of soil moisture, temperature and inorganic nitrogen on nitric oxide emission form acidic tropical savannah soils, J. Geophys. Res., 98(D8), 14,78314,790.
  • Chapius-Lardy, L., et al. (2009), Nitrous oxide fluxes from Malagasy agricultural soils, Geoderma, 148, 421427.
  • Cleveland, C. C., and B. W. Sullivan (2012), Drought and tropical soil emissions, Nature, 489, 211212.
  • Conrad, R., et al. (1983), Factor influencing the loss of fertilizer nitrogen into the atmosphere as N2O, J. Geophys. Res., 88, 67096718.
  • Crutzen, P. (1979), The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Planet. Sci., 7, 443472.
  • Crutzen, P. J., et al. (2008), N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys., 8, 389395.
  • Davidson, E. A. (1992), Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: An assessment of probable sources and importance relative to annual fluxes, Ecol. Bull., 42, 149155.
  • Davidson, E. A., and J. Schimel (1995), Microbial processes of production and consumption of nitric oxide, nitrous oxide and methane, in Biogenic Trace Gases: Measuring Emissions From Soil and Water, edited by P. A. Matson and R. C. Harriss, pp. 327357, Blackwell Sci., Oxford, U. K.
  • Davidson, E. A., et al. (2000), Testing a conceptual model of soil emissions of nitrous and nitric oxides, Bioscience, 50(8), 667680.
  • Denman, K. L., et al. (2007), Couplings between changes in the climate system and biogeochemistry, In: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [ S. D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., Chapter 7, 499587.
  • Donoso, L., et al. (1993), Seasonal variation of N2O fluxes at a tropical savannah site: Soil consumption of N2O during the dry season, Geophys. Res. Lett., 20(13), 13791382.
  • Firestone, M. K., and E. A. Davidson (1989), Microbiological basis of NO and N2O production and consumption in soil, in Exchange of Trace Gases Between Ecosystems and the Atmosphere, edited by M. O. Andreae and D. S. Schimel, pp. 721, John Wiley, Chichester, U. K.
  • Gee, G. W., and J. W. Bauder (1994), Particle-size analysis, in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed., chap. 15, pp. 383411, Soil Sci. Soc. of Am., Madison, Wisc.
  • Harris, G. W., et al. (1996), Airbone observations of strong biogenic NOx emissions from the Namibian Savanna at the end of the dty season, J. Geophys. Res., 101, 23,70723,711.
  • Hernandez-Ramirez, G., et al. (2009), Nitrous oxide production in an eastern corn belt soil: Sources and redox range, Soil Sci. Soc. Am. J., 73(4), 11821191.
  • Hirsh, A. I., et al. (2006), Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochem. Cycles, 20, GB1008, doi:10.1029/2004GB002443.
  • Huang, J., et al. (2008), Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse mehod, J. Geophys. Res., 113, D17313, doi:10.1029/2007JD009381.
  • Instituto Nacional de Meteorología e Hidrología (2009), Sistema de información - Datos hidrometeorológicos mensuales, Ministerio del Poder Popular para el Ambiente. Caracas, Venezuela.
  • Intergovernmental Panel on Climate Change (2007), Summary of policymakers, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. D. Solomon et al., pp. 118, Cambridge Univ. Press, Cambridge, U. K.
  • Jantalia, C. P., et al. (2008), Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil, Nutr. Cycling Agroecosyst., 82, 161173.
  • Johansson, C., and E. Sanhueza (1988), Emission of NO from savanna soils during rainy season, J. Geophys. Res., 93(D11), 14,19314,198.
  • Johansson, C., et al. (1988), Emission of NO in a tropical savanna and a cloud forest during the dry season, J. Geophys. Res., 93(D6), 71807192.
  • Keller, M., and W. A. Reiners (1994), Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica, Global Biogeochem. Cycles, 8(4), 399409.
  • Khalil, M. I., A. B. Rosenani, O. Van Cleemput, C. I. Fauziah, and J. Shamshuddin (2002), Nitrous oxide emissions from an ultisol of the humid tropics under maize-groundnut rotation, J. Environ. Qual., 31, 10711078.
  • Kim, D.-G., et al. (2013), Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis, Agric. Ecosyst. Environ., 168, 5365.
  • Klein, C. D., et al. (2006), Agriculture, Forestry and Other Land Use, In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Published: IGES, Japan, Chapter 11, 154.
  • Kroeze, C., et al. (1999), Closing the global N2O budget: A retrospective analysis 1500–1994, Global Biogeochem. Cycles, 13(1), 18.
  • Liu, X. J., et al. (2006), The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil, Plant Soil, 280, 177188.
  • Liu, Y. T., et al. (2011), Nitrous oxide emissions from irrigated and fertilized spring maize in semi-arid northern China, Agric. Ecosyst. Environ., 141, 287295.
  • Matson, P. A., et al. (1996), Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane, J. Geophys. Res., 101(D13), 18,53318,545.
  • Mosier, A. R., and J. A. Delgado (1997), Methane and nitrous oxide fluxes in the grassland in western Puerto Rico, Chemosphere, 35(9), 20592082.
  • Parkin, T. B., et al. (2012), Calculating the detection limits of chamber-based soil greenhouse gas flux measurements, J. Environ. Qual., 41, 705715.
  • Pérez, T., et al. (2007), Effect of conversion of natural grassland to cropland on nitric oxide emissions from Venezuelan savanna soils. A four-year monitoring study, Nutr. Cycling Agroecosyst., 77, 101113.
  • Rochette, P. (2008), No-till only increases N2O emissions in poorly-aerated soils, Soil Till Res., 101, 97100.
  • Rochette, P., and N. S. Eriksen-Hamel (2008), Chamber measurements of soil nitrous oxide flux: Are absolute values reliable?, Soil Sci. Soc. Am. J., 72(2), 331342.
  • Sabburg, J., et al. (1997), Dielectric behavior of moist swelling clay soils at microwave frequencies, IEEE Trans. Geosci. Remote Sens., 35(3), 784787.
  • Sanhueza, E., et al. (1990), N2O and NO emissions from soils of the northern part of the Guayana shield, Venezuela, J. Geophys. Res., 95(D13), 22,48122,488.
  • Sanhueza, E., et al. (1994), Effect of plowing on CO2, CO, CH4, N2O y NO fluxes from tropical savannah soils, J. Geophys. Res., 99(D8), 16,42916,434.
  • Saxton, K. E., et al. (1986), Estimating generalized soil-water characteristics from texture, Soil Sci. Soc. Am. J., 50, 10311036.
  • Silver, W. L., et al. (2000), Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem, Ecosystems, 3(2), 193209.
  • Stehfest, E., and L. Bouwman (2006), N2O and NO emission from agriucltural fields and soils under natural vegetation: Summarizing available data and modeling of global annual emissions, Nutr. Cycling Agroecosyst., 74(3), 207228.
  • Stevenson, F. J., and M. A. Cole (1999), Soil organic matter quality and characterization, in Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed., chap. 3, pp. 78100, John Wiley, New York.
  • Suratno, W., D. Murdiyarso, F. G. Suratmo, I. Anas, M. S. Saeni, and A. Rambe (1998), Nitrous oxide flux from irrigated rice fields in West Java, Environ. Pollut., 102(S1), 159166.
  • Sutton, M. A., and A. Bleeker (2013), The shape of nitrogen to come, Nature, 494, 435437.
  • Taylor, J. R. (1982), How to report and use uncertainties, in An Introduction to Error Analysis, 2nd ed., chap. 2, pp. 1343, Univ. Sci., Sausalito, Calif.
  • van Kessel, C., et al. (2013), Climate, duration, and N placement determine N2O emissions in reduce tillage systems: A meta-analysis, Global Change, 19, 3344.
  • Veldkamp, E., M. Keller, and M. Nuñez (1998), Effects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica, Global Biogeochem. Cycles, 12(1), 7179.
  • Veldkamp, E., and M. Keller (1997), Fertilizer-induced nitric oxide emissions from agricultural soils, Nutr. Cycling Agroecosyst., 48, 6977.
  • Vitousek, P. M., et al. (1989), Nitrous oxide flux from seasonally-dry tropical forests: A survey, Global Biogeochem. Cycles, 3, 375382.
  • van Vuuren, D. P., et al. (2011), Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in the scientific literature, Curr. Opin. Environ. Sustainability, 3, 359369.
  • Watanabe, T., P. Chairoj, H. Tsuruta, W. Masarngsan, C. Wongwiwatchai, S. Wonprasaid, W. Cholitkul, and K. Minami (2000), Nitrous oxide emissions from fertilized upland fields in Thailand, Nutr. Cycling Agroecosyst., 57, 55.
  • Weier, K. L., et al. (1996), Potential for biological denitrification of nitrogen in sugarcane soils, Aust. J. Soil Res., 47, 6779.
  • Weitz, A. M., E. Linder, S. Frolking, P. Crill, and M. Keller (2001), N2O emissions from humic tropical agricultural soils: Effects of soil moisture, texture and nitrogen availability, Soil Biol. Biochem., 33, 10771093.
  • World Meteorological Organization (WMO) (2011), The state of greenhouse gases in the atmosphere based on global observations through 2010, WMO Greenhouse Gas Bull., 7, pp. 14, Geneva, Switzerland.
  • Wrage, N., et al. (2001), Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem., 33(12–13), 17231732.
  • Yan, X., et al. (2005), Statistical modeling of global soil NOx emissions, Global Biogeochem. Cycles, 19, GB3019, doi:10.1029/2004GB002276.