SEARCH

SEARCH BY CITATION

References

  • Baddeley, A. (2008), Analysing spatial point patterns in R, CSIRO and University of Western Australia, Workshop Notes Version 3.
  • Baddeley, A., and R. Turner (2005), Spatstat: An R package for analyzing spatial point patterns, J. Stat. Software, 12(6), 142, URL: www.jstatsoft.org, ISSN: 1548–7660.
  • Bastviken, D., J. Cole, M. Pace, and L. Tranvik (2004), Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Glob. Biogeochem. Cyc., 18, doi:10.1029/2004gb002238.
  • Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast (2011), Freshwater methane emissions offset the continental carbon sink, Science, 331, 50.
  • Berman, M., and T. R. Turner (1992), Approximating point process likelihoods with GLIM, Appl. Stat., 41, 3138.
  • Birkengof, A. L. (1933), Observations on forest and permafrost, in Proceedings of Commission on Permafrost Studies, vol. 3, edited by V. A. Obruchev, pp., 4158, USSR Academy of Sciences, Leningrad (In Russian).
  • Bivand, R. S., E. J. Pembesma, and V. Gomez-Rubio (2008), Applied Spatial Data Analysis with R, Springer, New York.
  • Black, R. F. (1969), Thaw depressions and thaw lakes—A review, Biul. Peryglacjalny, 19, 131150.
  • Boereboom, T., M. Depoorter, S. Coppens, and J.-L. Tison (2012), Gas properties of winter lake ice in Northern Sweden, Biogeosci. Discuss., 8, 96399669.
  • Boudreau, B. P., B. S. Gardiner, and B. D. Johnson (2001), Rate of growth of isolated bubbles in sediments with a diagenetic source of methane, Limnol. Oceanogr., 46, 616622.
  • Boudreau, B. P., C. Algar, B. D. Johnson, I. Croudace, A. Reed, Y. Furukawa, K. M. Dorgan, P. A. Jumars, A. S. Grader, and B. S. Gardiner (2005), Bubble growth and rise in soft sediments, Geology, 33, 517520.
  • Brosius, L. S., K. M. Walter Anthony, G. Grosse, J. P. Chanton, L. M. Farquharson, P. P. Overduin, and H. Meyer (2012), Using the deuterium isotope composition of permafrost melt water to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation, J. Geophys. Res., 117, G01022, doi:10.1029/2011JG001810.
  • Carson, C. E., and K. M. Hussey (1962), The oriented lakes of arctic Alaska, J. Geol., 70, 417439.
  • Casper, P., S. C. Maberly, G. H. Hall, and B. J. Finlay (2000), Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere, Biogeochemistry, 49, 119, doi:10.1023/A:1006269900174.
  • Chanton, J. P., C. S. Martens, and C. A. Kelley (1989), Gas transport from methane-saturated, tidal freshwater and wetland sediments, Limnol. Oceanogr., 34, 807819.
  • Cressie, N. A. C. (1993), Statistics for Spatial Data, 2nd ed., John Wiley and Sons, New York.
  • Crill, P. M., K. B. Bartlett, J. O. Wilson, D. I. Sebacher, R. C. Harriss, J. M. Melack, S. MacIntyre, L. Lesack, and L. Smith-Morrill (1988), Tropospheric methane from an Amazonian floodplain lake, J. Geophys. Res., 93(D2), 15641570.
  • Czudek, T., and J. Demek (1970), Thermokarst in Siberia and its influence on the development of lowland relief, Quat. Res., 1, 103120.
  • Dale, A. W., D. R. Aguilera, P. Regnier, H. Fossing, N. J. Knab, and B. B. Jørgensen (2008), Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments, J. Mar. Res., 66, 127155.
  • Del Sontro, T., D. F. McGinnis, S. Sobek, I. Ostrovsky, and B. Wehrl (2010), Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments, Environ. Sci. Technol., 44, 24192425.
  • DelSontro, T., M. J. Kunz, T. Kempter, A. Wüest, B. Wehrli, and D. B. Senn (2011), Spatial heterogeneity of methane ebullition in a large tropical reservoir, Environ. Sci. Technol., 45, 98669873, doi:10.1021/es2005545.
  • Duc, N. T., P. Crill, and D. Bastviken (2010), Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments, Biogeochemistry, 100, 185196, doi:10.1007/s10533-010-9415-8.
  • Eisner, W. R., J. G. Bockheim, K. M. Hinkel, T. A. Brown, F. E. Nelson, and K. M. Peterson (2005), Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska, Paleogeogr., Paleoclimatol., Paleoecol., 217, 187204.
  • Engram, M., K. M. Walter Anthony, F. J. Meyer, and G. Grosse (2012), Investigating synthetic aperture radar (SAR) backscatter response from ice on thermokarst lakes, as an indicator of methane ebullition bubbles, on the Seward Peninsula, Alaska, USA, Can. J. Rem. Sens, 38(6), 116.
  • Farquharson, L. M. (2012), Sedimentology of thermokarst lakes forming within Yedoma on the Northern Seward Peninsula, MSc thesis, University of Alaska Fairbanks, Fairbanks, AK.
  • Fechner-Levy, E. J., and H. F. Hemond (1996), Trapped methane volume and potential effects on methane ebullition in a northern peatland, Limnol. Oceanogr., 41(7), 13751383.
  • Frohn, R. C., K. M. Hinkel, and W. R. Eisner (2005), Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska, Remote Sens. Environ., 97, 116126.
  • Gao, X., C. A. Schlosser, A. Sokolov, K. M. Walter Anthony, Q. Zhuang, and D. Kicklighter (2013), Permafrost degradation, methane, and their biogeochemical climate-warming feedback, Environ. Res. Lett., 8, 035014.
  • Glaser, P. H., J. P. Chanton, P. Morin, D. O. Rosenberry, D. I. Siegel, O. Ruud, L. I. Chasar, and A. S. Reeve (2004), Surface deformations as indicators of deep ebullition fluxes in a large northern peatland, Glob. Biogeochem. Cyc., 18, GB1003, doi:10.1029/2003GB002069.
  • Goodrich, J. (2010), Identifying temporal patterns and controlling factors in methane ebullition at Sallie's Fen, a temperate peatland site, using automated chambers, MS thesis, University of New Hampshire, Conway, NH.
  • Goodrich, J., R. K. Varner, S. Frolking, B. Duncan, and P. M. Crill (2011), High-frequency measurements of methane ebullition over a growing season at a temperate peatland site, Geophys. Res. Lett., 38, L07404, doi:10.1029/2011GL046915.
  • Gow, A. J., and D. Langston (1977), Growth history of lake ice in relation to its stratigraphic, crystalline, and mechanical structure, CRREL Report 77–1, U.S. Army Corps of Engineers, Hanover, New Hampshire, 29 pp.
  • Hamilton, T. D., J. L. Craig, and P. V. Sellmann (1988), The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska, Geol. Soc. Am. Bull., 100, 948969.
  • Hinkel, K. M., W. R. Eisner, J. G. Bockheim, F. E. Nelson, K. M. Peterson, and X. Y. Dia (2003), Spatial extent, age and carbon stocks of drained thaw lake basins on the Barrow Peninsula, Alaska, Arct. Antarct. Alp. Res., 35(3), 291300.
  • Hinkel, K. M., B. M. Jones, W. R. Eisner, C. J. Cuomo, R. A. Beck, and R. Frohn (2007), Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska, J. Geophys. Res., 112, F02S16, doi:10.1029/2006JF000584.
  • Hoefle, C., M. E. Edwards, D. M. Hopkins, D. H. Mann, and C.-L. Ping (2000), The full-glacial environment of the Northern Seward Peninsula, Alaska, reconstructed from the 21,500-year-old kitluk paleosol, Quat. Res., 53, 143153.
  • Hopkins, D. M., and J. G. Kidd (1988), Thaw lake sediments and sedimentary environments, in Proceedings of the Fifth International Conference on Permafrost, Tapir, Trondheim, edited by K. Senneset, pp. 790795, Academic, New York.
  • Hopkins, D. M., T. Karlstrom, R. Black, J. Williams, T. Péwé, A. Fernold, and E. Muller (1955), Permafrost and ground ice in Alaska, a shorter contribution to the general geology, Prof. Paper 264, U.S. Geol. Survey.
  • Illian, J., A. Penttinen, H. Stoyan, and D. Stoyan (2008), Statistical Analysis and Modeling of Spatial Point Patterns: From Spatial Data to Knowledge, John Wiley and Sons, New York NY.
  • Jones, B. M., G. Grosse, K. M. Walter Anthony, and L. J. Plug (2009), Thermokarst lake expansion and drainage in continuous permafrost, northern Seward Peninsula, Alaska, USA, poster presented, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract U41C-0058, San Francisco, CA.
  • Jones, B. M., G. Grosse, C. D. Arp, M. C. Jones, K. M. Walter Anthony, and V. E. Romanovsky (2011), Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska, J. Geophys. Res- Biogeo., 116, G00M03, doi:10.1029/2011JG001666.
  • Jorgenson, M. T., and Y. Shur (2007), Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle, J. Geophys. Res., 112, F02S17, doi:10.1029/2006JF000531.
  • Joyce, J., and P. W. Jewell (2003), Physical controls on methane ebullition from reservoirs and lakes, Environ. Eng. Geosci., 9, 167178.
  • Kanevskiy, M., Y. Shur, D. Fortier, M. T. Jorgenson, and E. Stephani (2011), Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure, Quat. Res., doi:10.1016/j.yqres.2010.12.003.
  • Kaplina, T. N. (1981), History of permafrost development in late Cenozoic, in History of Development of Permafrost in Eurasia, edited by G. I. Dubikov, and V. V. Baulin, pp. 153180, Nauka, Moscow (In Russian).
  • Kaufman, D. S., and D. M. Hopkins (1986), Glacial history of the Seward Peninsula, in Glaciation in Alaska: The Geologic Record, edited by T. D. Hamilton, K. M. Reed, and R. M. Thorson, pp. 5178, Alaska Geological Society, Anchorage.
  • Keller, M., and R. F. Stallard (1994), Methane emission by bubbling from Gatun Lake, Panama, J. Geophys. Res., 99(D4), 83078319, doi:10.1029/92JD02170.
  • Kessler, M. A., L. Plug, and K. Walter Anthony (2012), Simulating the decadal to millennial scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in N.W. Alaska, J. Geophys. Res., 117, G00M06, doi:10.1029/2011JG001796.
  • Ku, H. (1966), Notes on the Use of Propagation of Error Formulas, J Res. Natl. Bur. Stand.-C. Eng. Instrum., 70C(4), 263273.
  • Lehman, J. T. (1975), Reconstructing the rate of accumulation of lake sediment: The effect of sediment focusing, Quat. Res., 5, 541550, doi:10.1016/0033-5894(75)90015-0.
  • Lewin-Koh, N. J., and R. Bivand (2011), Package “maptools”, Available from http://cran.r-project.org/web/packages/maptools/index.html, verified 22 May 2011.
  • Liikanen, A., T. Murtoniemi, H. Tanskanen, T. Väisänen, and P. J. Martikainen (2002), Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake, Biogeochemistry, 59, 269286.
  • Livingstone, D. A., K. Bryan, and R. G. Leahy (1958), Effects of an arctic environment on the origin and development of fresh-water lakes, Limnol. Oceanogr., 3, 192214.
  • Manley, W. F., and D. S. Kaufman (2002), Alaska PaleoGlacier Atlas, Vol. 1. Institute of Arctic and Alpine Research (INSTAAR), University of Colorado. http://instaar.colorado.edu/QGISL/ak_paleoglacier_atlas.
  • Martens, C. S., and J. V. Klump (1980), Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes, Geochim. Cosmochim. Acta, 44, 471490.
  • Martens, C. S., G. W. Kipphut, and J. V. Klump (1980), Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements, Science, 208, 285288.
  • Massé, D. I., R. L. Droste, K. J. Kennedy, N. K. Patni, and J. A. Munroe (1997), Potential for the psychrophilic anaerobic treatment of swine manure using a sequencing batch reactor, Canadian Agric. Eng., 39(1), 2533.
  • Mattson, M. D., and G. E. Likens (1990), Air pressure and methane fluxes, Nature, 347, 718719.
  • McGinnis, D. F., J. Greinert, Y. Artemov, S. E. Beaubien, and A. Wüest (2006), Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, J. Geophys. Res., 111, C09007, doi:10.1029/2005JC003183.
  • Metje, M., and P. Frenzel (2005), Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland, Appl. Environ. Microbiol., 71, 81918200.
  • Muhs, D. R., and J. R. Budahn (2006), Geochemical evidence for the origin of late Quaternary loess in central Alaska, Can. J. Earth Sci., 43, 323337, doi:10.1139/E05-115.
  • Murton, J. B. (1996), Thermokarst-lake-basin sediments,Tuktoyaktuk Coastlands, western arctic Canada,Sedimentology, 43, 737760.
  • Péwé, T. L. (1975), Quaternary geology of Alaska, U.S. Geol. Survey Professional Paper 835.
  • R Development Core Team (2010), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, (Available at http://www.R-project.org).
  • Ramos, M. F., et al. (2006), Extreme event dynamics in methane ebullition fluxes from tropical reservoirs, Geophys. Res. Lett., 33, L21404, doi:10.1029/2006GL027943.
  • Reyes, A. V., D. G. Froese, and B. J. L. Jensen (2010), Permafrost response to lat interglacial warming: Field evidence from non-glaciated Yukon and Alaska, Quat. Scie. Rev., 29, 32563274, doi:10.1016/j.quascirev.2010.07.013.
  • Sasaki, M., S. Imura, S. Kudoh, T. Yamanouchi, S. Morimoto, and G. Hashida (2009), Methane efflux from bubbles suspended in ice-covered lakes in Syowa Oasis, East Antarctica, J. Geophys. Res., 114, D18114, doi:10.1029/2009JD011849.
  • Scandella, B. P., C. Varadharajan, H. F. Hemond, C. Ruppel, and R. Juanes (2011a), A conduit dilation model of methane venting from lake sediments, Geophys. Res. Lett., 38, L06408, doi:10.1029/2011GL046768.
  • Scandella, B. P., H. Hemond, C. Ruppel, and R. Juanes (2011b), Escape paths for biogenic methane gas in lake sediments: Morphology and dynamics, poster presented, Eos Trans. AGU, Fall Meet. Suppl., Abstract H21B-1089, San Francisco, CA.
  • Schubert, C. J., T. Diem, and W. Eugster (2012), Methane Emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: A comparison, Environ. Sci. Technol., 46, 45154522.
  • Sellmann, P. V., J. Brown, R. I. Lewellen, H. McKim, and C. Merry (1975), The classification and geomorphic implications of thaw lakes on the arctic coastal plain, Alaska. 21 pp. U.S. Army CRREL Research Report.
  • Stuiver, M., and H. Polach (1977), Reporting of 14C data, Radiocarbon, 19, 355363.
  • Thompson, S. K. (2012), Sampling, 3rd ed., John Wiley and Sons, New York, NY.
  • Tomirdiaro, S. V. (1980), Loess-ice Formation of Eastern Siberia in the Late Pleistocene and Holocene, pp. 184, Nauka, Moscow (in Russian).
  • Valentine, D. L., and W. S. Reeburgh (2000), New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477484.
  • Valentine, D. L., D. C. Blanton, W. S. Reeburgh, and M. Kastner (2001), Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin, Geochim. Cosmochim. Acta, 65(16), 26332640.
  • Van Lieshout, M. N. M., and A. J. Baddeley (1999), Indices of dependence between types in multivariate point patterns, Scand. J. Stat., 26, 511532.
  • Varadharajan, C. (2009), Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
  • Walter Anthony, K. M., D. Vas, L. Brosius, F. S. Chapin III, S. A. Zimov, and Q. Zhuang (2010), Estimating methane emissions from northern lakes using ice bubble surveys, Limnol. Oceanogr. Methods, 8, 592609.
  • Walter Anthony, K. M., P. Anthony, G. Grosse, and J. Chanton (2012), Geologic methane seeps along boundaries of arctic permafrost thaw and melting glaciers, Nat. Geosci., doi:10.1038/Ngeo1480.
  • Walter, K. M., S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin III (2006), Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming, Nature, 443, 7175.
  • Walter, K. M., J. P. Chanton, F. S. Chapin III, E. A. G. Schuur, and S. A. Zimov (2008), Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages, J. Geophys. Res., 113, G00A08, doi:10.1029/2007JG000569.
  • West, J. J., and L. J. Plug (2008), Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice, J. Geophys. Res., 113, F01009, doi:10.1029/2006JF000696.
  • Wik, M., P. M. Crill, D. Bastviken, Å. Danielsson, and E. Norbäck (2011a), Bubbles trapped in arctic lake ice: Potential implications for methane emissions, J. Geophys. Res., 116, G03044, doi:10.1029/2011JG001761.
  • Wik, M., P. Crill, J. Uhlbäck, and D. Bastviken (2011b), Methane bubbling from three arctic lakes, poster presented, Eos Trans. AGU, Fall Meet. Suppl., Abstract B13F-0639, San Francisco, CA.
  • Wohlschlag, W. C. (1953), Some characteristics of the fish populations in an arctic Alaskan lake, in Current Biological Research in the Alaskan Arctic, University Series Biological Sciences Volume XI, edited by I. L. Wiggins, pp. 1929, Stanford University Publications, Stanford University Press, Stanford.
  • Zimov, S. A., Y. V. Voropaev, I. P. Semiletov, S. P. Davidov, S. F. Prosiannikov, F. S. Chapin III, M. C. Chapin, S. Trumbore, and S. Tyler (1997), North Siberian lakes: A methane source fueled by Pleistocene carbon, Science, 277, 800802.
  • Zimov, S. A., E. A. G. Schuur, and F. S. Chapin III (2006), Permafrost and the global carbon budget, Science, 312, 16121613, doi:10.1126/science.1128908.