SEARCH

SEARCH BY CITATION

References

  • Aalde, H., P. Gonzalez, M. Gytarsky, T. Krug, W. A. Kurz, and S. Ogle (2006), Forest land. Intergovernmental Panel on Climate Change, in National Greenhouse Gas Inventory Guidelines, 4, 183, Institute for Global Environmental Strategies, Hayama, Japan.
  • Archer, S. (1999), Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes, in Ecological Implications of Livestock Herbivory in the West, edited by M. Vavra, W. Laylock, and R. D. Pieper, pp. 1369, Society for Range Management, Denver, CO.
  • Asner, G. P., et al. (2010), High-resolution forest carbon stocks and emissions in the Amazon, Proc. Natl. Acad. Sci., 107, 16,73816,742.
  • Bates, J. D., K. W. Davies, and R. N. Sharp (2011), Shrub-steppe early succession following juniper cutting and prescribed fire, Env. Manage, 47, 468481.
  • Benz, U. C., P. Hoffmann, G. Willhauck, I. Lingenfelder, and M. Heynen (2004), Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogr. Rem. Sens., 58, 239258.
  • Blackburn, W. H., and P. T. Tueller (1970), Pinyon and juniper invasion in black sagebrush communities in east-central Nevada, Ecology, 51, 841848.
  • Bork, E. W., and J. G. Su (2007), Integrating LiDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis, Rem. Sens. Env., 111, 1124.
  • Bradley, B. A., R. A. Houghton, J. F. Mustard, and S. P. Hamburg (2006), Invasive grass reduces aboveground carbon stocks in shrublands of the western US, Glob. Change Biol., 12, 18151822.
  • Cleary, M. B., E. Pendell, and E. B. Ewers (2008), Testing sagebrush allometric relationships across three fire chronosequences in Wyoming, USA, J. Arid Env., 72, 285301.
  • Cleary, M. B., E. Pendell, and E. B. Ewers (2010), Aboveground and belowground carbon pools after fire in mountain big sagebrush steppe, Range. Ecol. Manage., 63, 187196.
  • Cline, N. L., B. Roundy, F. Pierson, P. Kormos, and J. Williams (2010), Hydrologic response to mechanical shredding in a juniper woodland, Range. Ecol. Manage., 63, 467477.
  • Conant, R. T., J. M. Klopatek, R. C. Malin, and C. C. Klopatek (1998), Carbon pools and fluxes along an environmental gradient in northern Arizona, Biogeochemistry, 43, 4361.
  • Davies, K. W., and J. D. Bates (2010), Vegetation characteristics of mountain and Wyoming big sagebrush plant communities in the Northern Great Basin, Range. Ecol. Manage., 63, 461466.
  • Dubayah, R. O., and J. B. Drake (2000), Lidar remote sensing for forestry, J. For., 98, 4446.
  • Gaveau, D. L. A., and R. A. Hill (2003), Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data, Can. J. Remote Sens., 29, 650657.
  • Gholz, H. L., C. C. Grier, A. G. Campbell, and A. T. Brown (1979), Equations for estimating biomass and leaf area of plants in the Pacific Northwest, Ore. State Univ. For. Res. Lab. Res. Pap., 41, Corvallis, OR.
  • Glenn, N. F., L. Spaete, T. Sankey, D. Derryberry, S. Hardegree, and J. Mitchell (2011), Errors in LiDAR-derived shrub height and crown area on sloped terrain, J. Arid Env., 75(4), 377382, doi:10.1016/j.jaridenv.2010.11.005.
  • Gonzalez, P., G. P. Asner, J. J. Battles, M. A. Lefsky, K. M. Waring, and M. Palace (2010), Forest carbon densities and uncertainties from Lidar, Quickbird, and field measurements in California, Rem. Sens. Env., 114, 15611575.
  • Gould, S., N. Glenn, T. Sankey, J. McNamara, and L. Spaete (2013), Influence of a dense, low-height shrub species on the accuracy of a LiDAR-derived DEM, Photogram. Eng. Rem. Sens., 79, 421431.
  • Harrington, J., and M. Williams (2008), Belowground carbon distribution in a pinyon-juniper/short grass prairie site, in Ecology, management, and restoration of pinon-juniper and ponderosa pine ecosystems: Combined proceedings of the 2005 St. George, Utah and 2006 Albuquerque, New Mexico workshops, edited by G. J. Gottfried, J. D. Shaw, and P. L. Ford, Proc. RMRS-P-51.
  • Hocking, R. R. (2003), Methods and applications of linear models: Regression and the analysis of variance, John Wiley, Hoboken, N. J.
  • Hooker, T. D., J. M. Stark, N. A. Urszula, J. Leffler, M. Peek, and R. Ryel (2008), Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA, Biogeochemistry, 90, 291308.
  • Hopkinson, C., L. E. Chasmer, G. Zsigovics, I. F. Creed, M. Sitar, P. Treitz, and R. V. Maher (2004), Errors in LiDAR ground elevation and wetland vegetation height estimates, in Laser-Scanners for Forest and Landscape Assessment, Proc. ISPRS working group VIII/2, October 2004, ISPRS 36, PART 8/W2, Freiburg, Germany 03-06.
  • Houghton, R. A. (2003), Why are estimates of the terrestrial carbon balance so different?, Glob. Change Biol., 9, 500509.
  • Houghton, R. A., J. L. Hackler, and K. T. Lawrence (1999), The US carbon budget: contributions from land-use change, Science, 285, 574578.
  • Huang, C., G. P. Asner, R. Martin, N. Barger, and J. Neff (2009), Multiscale analysis of tree cover and aboveground carbon stocks in pinyon–juniper woodlands. Ecol. App., 19, 668681.
  • Hyyppa, J., O. Kelle, M. Lehikoinen, and M. Inkinen (2001), A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner, IEEE Trans. Geosci. Remote Sens., 39, 969975.
  • Jackson, R. B., et al. (2000), Belowground consequences of vegetation change and their treatment in models, Ecol. App., 10, 470483.
  • Johnson, D., and R. F. Miller (2006), Structure and development of expanding western juniper woodlands as influenced by two topographic variables, For. Ecol. Manage., 229, 715.
  • Koch, B. (2010), Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment, ISPRS J. Photogramm., 65, 581590.
  • Krammer, S., and D. M. Green (2000), Acid and alkaline phosphate dynamics and their relationship to soil microclimate in a semiarid woodland, Soil Biol. Biochem., 32, 179188.
  • Leica ALS50—Airborne Laser Scanner Product Specifications. [Online]. Available at: http://www.unicaen.fr/recherche/clarec/IMG/pdf/ALS50_brochure.pdf.
  • Liao, J. D., T. W. Boutton, and J. D. Jastrow (2006), Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15 N, Soil Biolog. Biochem, 38, 31973210.
  • Mather, A. (2000), South–north challenges in global forestry, in World Forests from Deforestation to Transition, edited by M. Palo and H. Vananen, Kluwer Academic Publishers, Dordrecht.
  • Means, J. E., S. A. Acker, B. J. Fitt, M. Renslow, L. Emerson, and C. J. Hendrix (2000), Predicting forest stand characteristics with airborne scanning lidar, Photogr. Eng. Rem. Sens, 66(11), 13671371.
  • Miller, R. F., and J. A. Rose (1995), Historic expansion of Juniperus occidentalis (western juniper) in southeastern Oregon, J. Range Manage., 55, 3745.
  • Miller, R. F., and J. A. Rose (1999), Fire history and western juniper encroachment in sagebrush steppe, J. Range Manage., 52, 550559.
  • Miller, R. F., and P. E. Wigand (1994), Holocene changes in semiarid pinyon-juniper woodlands, Bioscience, 44, 465473.
  • Miller, R. F., T. J. Svejcar, and J. A. Rose (2000), Impacts of western juniper on plant community composition and structure, J. Range Manage., 53, 574585.
  • Miller, R. F., J. D. Bates, T. J. Svejcar, F. B. Pierson, L. E. Eddleman (2005), Biology, Ecology, and Management of Western Juniper (Juniperus occidentalis). Ore. State Univ. Agric. Exp. Sta. Tech. Bull. No. 152, 77 pp. Corvallis, OR.
  • Mitchell, J., N. F. Glenn, T. Sankey, D. R. Derryberry, M. O. Anderson, and R. Hruska (2011), Small-footprint LiDAR estimations of sagebrush canopy characteristics, Photogr. Eng. Rem. Sens., 77(5), 521530.
  • Montgomery, D. C., E. A. Peck, and G. G. Vining (2006), Introduction to linear regression analysis, 4th ed., John Wiley, Hoboken, N. J.
  • Mundt, J. T., D. R. Streutker, and N. F. Glenn (2006), Mapping sagebrush distribution using fusion of hyperspectral and lidar classifications, Photogr. Eng. Rem. Sens., 72, 4754.
  • Næsset, E., and T. Gobakken (2008), Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser, Rem. Sens. Env., 112(6), 30793090.
  • Neff, J. C., N. N. Barger, W. T. Baisden, D. P. Frenandez, and G. P. Asner (2009), Soil carbon storage responses to expanding pinyon–juniper populations in southern Utah, Ecol. App., 19, 14051416.
  • Nelson, R. (1997), Modeling forest canopy heights: The effects of canopy shape, Rem. Sens. Env., 60, 327334.
  • Pacala, S. W., and G. C. Hurtt (2001), Consistent land- and atmosphere-based U.S. carbon sink estimates, Science, 292, 23162319.
  • Pan, Y., et al. (2011), A large and persistent carbon sink in the world's forests, Science, doi:10.1126/science.1201609.
  • Pierson, F. B., C. J. Williams, P. R. Kormos, S. P. Hardegree, P. Clark, and B. M. Rau (2010), Hydrologic vulnerability of sagebrush steppe following pinyon and juniper encroachment, Range. Ecol. Manage., 63, 614629.
  • Popescu, S. C. (2007), Estimating biomass of individual pine trees using airborne lidar, Biomass Bioenergy, 31, 646655.
  • Popescu, S. C., and R. H. Wynne (2004), Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height, Photogr. Eng. Rem. Sens., 70, 589604.
  • Popescu, S. C., R. H. Wynne, and R. F. Nelson (2003), Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass, Can. J. Rem. Sens., 29, 564577.
  • Rango, A., M. J. Chopping, J. C. Ritchie, K. Havstad, W. Kustas, and T. Schmugge (2000), Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning LiDAR, Rem. Sens. Env., 76, 2644.
  • Rau, B. M., D. W. Johnson, R. R. Blank, and J. C. Chambers (2009), Soil carbon and nitrogen in a Great Basin pinyon–juniper woodland: Influence of vegetation, burning, and time, J. Arid Env, 73, 472479.
  • Rau, B. M., D. W. Johnson, R. R. Blank, R. J. Tausch, B. A. Roundy, R. F. Miller, T. G. Caldwell, and A. Lucchesi (2011), Woodland expansion's influence on belowground carbon and nitrogen in the Great Basin, U.S., J. Arid Env, 75, 827835.
  • Reiley, D. K. (2003), Land use history and effects on soil carbon storage patterns in a pinon-juniper woodland in northern New Mexico, MS thesis, Univ. of Wisc.-Madison, Madison.
  • Riano, D., E. Chuvieco, S. L. Ustin, J. Salas, J. R. Rodriguez-Perez, L. M. Ribeiro, D. Viegas, J. M. Moreno, and H. Fernandez (2007), Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging, Intern. J. Wildl. Fire, 16, 341348.
  • Ritchie, J. C., K. S. Humes, and M. A. Weltz (1995), Laser altimeter measurements at Walnut Gulch watershed, Arizona, J. Soil Wat. Cons., 50, 440442.
  • Romme, W. H., et al. (2009), Historical and modern disturbance regumes, stand structures, and landscape dynamics in pinon-juniper vegetation of the western United States, Range. Ecol. Manage., 62, 203222.
  • Rozeboom, W. W. (1978), Estimation of cross-validated multiple correlation: A clarification, Psych. Bull., 85, 13481351.
  • Sankey, T. T., and P. Bond (2011), LiDAR-based classification of sagebrush community types, Range. Ecol. Manage., 64, 9298.
  • Sankey, T., and M. Germino (2008), Assessment of juniper encroachment with the use of satellite imagery and geospatial data, Range. Ecol. Manage., 61, 412418.
  • Sankey, T., and N. Glenn (2011), Landsat-5 TM and lidar fusion for sub-pixel juniper tree cover estimates in a western rangeland, Photogr. Eng. Rem. Sens., 77(12), 12411248.
  • Sankey, T. T., N. Glenn, S. Ehinger, A. Boehm, and S. Hardegree (2010), Characterizing western juniper expansion via a fusion of Landsat 5 Thematic Mapper and lidar data, Range. Ecol. Manage., 63, 514523.
  • Stokes, M. A., and T. L. Smiley (1968), An introduction to tree-ring dating, Univ. of Chicago Press, Chicago, Ill.
  • Strand, E. K., L. A. Vierling, A. M. S. Smith, and S. C. Bunting (2008), Net changes in aboveground woody carbon stock in western juniper woodlands, 1946–1998, J. Geophys. Res., 113, G01013, doi:10.1029/2007JG000544.
  • Streutker, D. R., and N. F. Glenn (2006), LiDAR measurement of sagebrush steppe vegetation heights, Rem. Sens. Env., 102, 135145.
  • Su, J. G., and E. W. Bork (2007), Characterization of diverse plant communities in Aspen Parkland rangeland using LiDAR data, Appl. Veg. Sci., 10, 407416.
  • Tausch, R. J., N. E. West, and A. A. Nabi (1981), Tree age and dominance patterns in Great Basin pinyon-juniper woodlands, J. Range Manage., 34, 259264.
  • Waichler, W. S., R. F. Miller, and P. S. Doescher (2001), Community characteristics of old-growth western juniper woodlands, J. Range Manage., 54, 518527.
  • Wang, G., G. Z. Gertner, S. Fang, and A. B. Anderson (2005), A methodology for spatial uncertainty analysis of remote sensing and GIS products, Photogramm. Eng. Rem. Sens., 71, 14231432.
  • Weltz, M. A., J. C. Ritchie, and H. D. Fox (1994), Comparison of laser and field measurements of vegetation height and canopy cover, Water Resour. Res., 30, 13111319.
  • Zolkos, S. G., S. J. Goetz, and R. Dubayah (2013), A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing, Rem. Sens. Env., 128, 289298.