SEARCH

SEARCH BY CITATION

References

  • Ahmad, Z., I. M. Allam, and B. J. Aleem (2000), Effect of environmental factors on the atmospheric corrosion of mild steel in aggressive coastal environment, Anti-Corros. Methods Mater., 47, 215225.
  • Ainsworth, E. A. (2008), Rice production in changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration, Global Change Biol., 14, 16421650.
  • Altimir, L., J. P. Tuovinen, T. Vesala, M. Kulmala, and P. Hari (2004), Measurements of ozone removal by Scots pine shoots: Calibration of a stomatal uptake model including the non-stomatal component, Atmos. Environ., 38, 23872398.
  • Ammann, C., A. Brunner, C. Spirig, and A. Neftel (2006), Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 46434651.
  • Anav, A., L. Menut, D. Khvorostyanov, and N. Viovy (2012), A comparison of two canopy conductance parameterizations to quantify the interactions between surface ozone and vegetation over Europe, J. Geophys. Res., 117, G03027, doi:10.1029/2012JG001976.
  • Ashmore, M., L. Emberson, P. E. P. K. Karlsson, and H. Pleijel (2004), Introduction for ozone deposition special issue, Atmos. Environ., 38, 22112212.
  • Aubinet, M., et al. (2000), Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, Adv. Ecol. Res., 30, 113175.
  • Avnery, S., D. L. Mauzerall, J. Liu, and L. W. Horowitz (2011a), Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos. Environ., 45, 22842296.
  • Avnery, S., D. L. Mauzerall, J. Liu, and L. W. Horowitz (2011b), Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution, Atmos. Environ., 45, 22972309.
  • Barnes, J. D., and K. A. Brown (1990), The influence of ozone and acid mist on the amount and wettability of the surface waxes in Norway spruce [Picea abies (L.) Karts.], New Phytol., 114, 531535.
  • Barnes, J. D., A. W. Davison, and T. A. Booth (1988), Ozone accelerates structural degradation of epicuticular wax on Norway spruce needles, New Phytol., 110, 309318.
  • Bassin, S., P. Calanca, T. Weidinger, G. Gerosa, and J. Fuhrer (2004), Modeling seasonal ozone fluxes to grassland and wheat: Model improvement, testing, and application, Atmos. Environ., 38, 23492359.
  • Betzelberger, A. M., K. M. Gillespie, J. M. McGrath, R. P. Koester, R. L. Nelson, and E. A. Ainsworth (2010), Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars, Plant. Cell. Environ., 33, 15691581.
  • Booker, F., R. Muntifering, M. McGrath, K. Burkey, D. Decoteau, E. Fiscus, W. Manning, S. Krupa, A. Chappelka, and D. Grantz (2009), The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species, J. Integr. Plant Biol., 51, 337351.
  • Boyce, A., A. G. Nord, and K. Tronner (2001), Atmospheric bronze and copper corrosion as an environmental indicator, Water Air Soil Pollut., 127, 193205.
  • Büker, P., et al. (2007), Comparison of different stomatal conductance algorithms for ozone flux modelling, Environ. Pollut., 146, 726735.
  • Büker, P., et al. (2012), DO3SE modelling of soil moisture to determine ozone flux to forest trees, Atmos. Chem. Phys., 12, 55375562.
  • Bunce, J. A. (2000), Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field, Global Change Biol., 6, 371382.
  • Coyle, M., E. Nemitz, R. Storeton-West, D. Fowler, and J. N. Cape (2009), Measurements of ozone deposition to a potato canopy, Agric. For. Meteorol., 149, 655666.
  • Emberson, L. D., M. R. Ashmore, H. M. Cambridge, D. Simpson, and J. P. Tuovinen (2000a), Modelling stomatal ozone flux across Europe, Environ. Pollut., 109, 403413.
  • Emberson, L. D., D. Simpson, J. P. Tuovinen, M. R. Ashmore, and H. M. Cambridge (2000b), Towards a model of ozone deposition and stomatal uptake over Europe, EMEP/MSC-W Note 6/2000, Norwegian Meteorological Institute, Oslo.
  • Eurostat (2011), Agriculture and fishery statistics. Main results – 2009–10, ISSN 1977–2262, Publications Office of the European Union, Luxembourg.
  • Fares, S., G. Matteucci, G. Scarascia Mugnozza, A. Morani, C. Calfapietra, E. Salvatori, L. Fusaro, F. Manes, and F. Loreto (2013), Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest, Atmos. Environ., 67, 242251.
  • Fares, S., M. McKay, R. Holzinger, and A. H. Goldstein (2010), Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence from long-term continuous measurements, Agric. For. Meteorol., 150, 420431.
  • Felzer, B. S., T. Cronin, J. M. Reilly, J. M. Melillo, and X. Wang (2007), Impacts of ozone on trees and crops, C. R. Geosci., 339, 784798.
  • Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Basis, Contribution of Working Group I to Fourth Assessment Report of IPCC on Climate Change, edited by S. Solomon et al., pp. 136137, Cambridge University Press, Cambridge, U. K.
  • Fowler, D., C. Flechard, U. Skiba, M. Coyle, and J. N. Cape (1998), The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition, New Phytol., 139, 1123.
  • Fowler, D., J. N. Cape, M. Coyle, R. I. Smith, A. G. Hjellbrekke, D. Simpson, R. G. Derwent, and C. E. Johnson (1999), Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems, Environ. Pollut., 100, 4355.
  • Fowler, D., et al. (2009), Atmospheric composition change: Ecosystems-atmosphere interactions, Atmos. Environ., 43, 51935267.
  • Fuhrer, J. (2000), Introduction to the special issue on ozone risk analysis for vegetation in Europe, Environ. Pollut., 109, 359360.
  • Fuhrer, J. (2009), Ozone risk for crops and pastures in present and future climates, Naturwissenschaften, 96, 173194.
  • Gabrielle, B., P. Laville, O. Duval, B. Nicoullaud, J. C. Germon, and C. Hénault (2006), Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the subregional scale, Global Biogeochem. Cycles, 20, GB4018, doi:10.1029/2006GB002686.
  • Gallagher, M. W., K. M. Beswick, and H. Coe (2001a), Ozone deposition to coastal waters, Q. J. R. Meteorol. Soc., 127, 539558.
  • Gallagher, M. W., K. M. Beswick, G. McFiggans, H. Coe, and T. W. Choularton (2001b), Ozone dry deposition velocities for coastal waters, Water Air Soil Pollut. Focus, 1, 233242.
  • Ganzeveld, L., J. Lelieveld, F. J. Dentener, M. C. Krol, and G. J. Roelofs (2002), Atmosphere-biosphere trace gas exchanges simulated with a single-column model, J. Geophys. Res., 107(D16), 4297, doi:10.1029/2001JD000684.
  • Ganzeveld, L., J. Valverde-Canossa, G. Moortgat, and R. Steinbrecher (2006), Evaluation of peroxide exchanges over a coniferous forest in a single-column chemistry-climate model, Atmos. Environ., 40, 6880.
  • Gerosa, G., R. Marzuoli, S. Cieslik, and A. Ballarin Denti (2004), Stomatal ozone fluxes over a barley field in Italy. “Effective exposure” as a possible link between exposure- and flux-based approaches, Atmos. Environ., 38, 24212432.
  • Gerosa, G., M. Vitale, A. Finco, F. Manes, A. Ballarin Denti, and S. Cieslik (2005), Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: Micrometeorological flux measurements and flux partitioning, Atmos. Environ., 39, 32553266.
  • Grünhage, L., and H. D. Haenel (1997), PLATIN (PLant-ATmosphere INteraction) I: A model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants, Environ. Pollut., 98, 3750.
  • Grünhage, L., and H. D. Haenel (2008), PLATIN (PLant-ATmosphere INteraction) – A model of biosphere/atmosphere exchange of latent and sensible heat, trace gases and fine-particle constituents, Landbauforschung, 58, 253266.
  • Hazucha, M. J., and A. S. Lefohn (2007), Nonlinearity in human health response to ozone: Experimental laboratory considerations, Atmos. Environ., 41, 45594570.
  • Hillstrom, M. L., and R. L. Lindroth (2008), Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition, Insect. Conserv. Diver., 1, 233241.
  • Ito, K., S. F. De Leon, and M. Lippmann (2005), Associations between ozone and daily mortality: Analysis and meta-analysis, Epidemiology, 16, 446457.
  • Jones, H. G. (1992), Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge University Press, Cambridge, UK, 2nd edition, pp.
  • Karnosky, D. F., et al. (2003), Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem results form the Aspen FACE project, Funct. Ecol., 17, 289304.
  • Lamaud, E., B. Loubet, M. Irvine, P. Stella, E. Personne, and P. Cellier (2009), Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes using eddy-covariance flux measurements and modeling, Agric. For. Meteorol., 149, 13851396.
  • Laville, P., D. Flura, B. Gabrielle, B. Loubet, O. Fanucci, M. N. Rolland, and P. Cellier (2009), Characterisation of soil emissions of nitric oxide at field and laboratory scale using high resolution method, Atmos. Environ., 43, 26482658.
  • Laville, P., S. Lehuger, B. Loubet, F. Chaumartin, and P. Cellier (2011), Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements, Agric. For. Meteorol., 151, 228240.
  • Lee, D. S., M. R. Holland, and N. Falla (1996), The potential effect of ozone on materials in the UK, Atmos. Environ., 30, 10531065.
  • Lehuger, S., B. Gabrielle, P. Cellier, B. Loubet, R. Roche, P. Béziat, E. Ceschia, and M. Wattenbach (2010), Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model, Agric. Ecosyst. Environ., 139, 384395.
  • Loubet, B., et al. (2013), Investigating discrepancies in heat, CO2 fluxes and O3 deposition velocity over maize as measured by the eddy-covariance and the aerodynamic gradient methods, Agric. For. Meteorol., 169, 3550.
  • Loubet, B., et al. (2012), Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads, Biogeosciences, 9, 15371552.
  • Loubet, B., et al. (2011), Carbon, nitrogen and greenhouse gases budgets over a four years crop rotation in northern France, Plant Soil, 343, 109137.
  • LRTAP Convention (2010), In: Mills, G., et al. (Eds.), Chapter 3 of the LRTAP Convention Manual of Methodologies for Modelling and Mapping Effects of Air Pollution Available at http://icpvegetation.ceh.ac.uk/.
  • Massman, W. J. (2004), Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and possible metric, Atmos. Environ., 38, 23232337.
  • Matyssek, R., A. Bytnerowicz, P. E. Karlsson, E. Paoletti, E. Sanz, M. Schaub, and G. Wieser (2007), Promoting the O3 flux concept for European forest trees, Environ. Pollut., 146, 587607.
  • Mills, G., A. Buse, B. Gimeno, V. Bermejo, M. Holland, L. Emberson, and H. Pleijel (2007), A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops, Atmos. Environ., 41, 26302643.
  • Mills, G., et al. (2010), Mapping critical levels for vegetation, 2010 revision, In: International Cooperative Programme on effects of air pollution on Natural vegetation and crops – UNECE Convention on long-range Transboundary air pollution, Mapping Manual 2004, Chapter III.
  • Misson, L., J. A. Panek, and A. H. Goldstein (2004), A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forest, Tree Physiol., 24, 529541.
  • Muller, J. B. A., C. J. Percival, M. W. Gallagher, D. Fowler, M. Coyle, and E. Nemitz (2010), Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers, Atmos. Meas. Tech., 3, 163176.
  • Ode, P. J. (2006), Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions, Annu. Rev. Entomol., 51, 163185.
  • Op de Beeck, M., M. De Bock, K. Vandermeiren, L. de Temmerman, and R. Ceulemans (2010), A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species, Environ. Pollut., 158, 32513260.
  • Paoletti, E. (2005), Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbustus unedo, Environ. Pollut., 134, 439445.
  • Payne, R. J., C. J. Stevens, N. B. Dise, D. J. Gowing, M. G. Pilkington, G. K. Phoenix, B. A. Emmett, and M. R. Ashmore (2011), Impacts of atmospheric pollution on the plant communities of British acid grasslands, Environ. Pollut., 159, 26022608.
  • Percy, K. E., K. F. Jensen, and C. J. McQuattie (1992), Effects of ozone and acidic fog on red spruce needle epicuticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability, New Phytol., 122, 7180.
  • Percy, K. E., S. Manninen, K. H. Häberle, C. Heerdt, H. Werner, G. W. Henderson, and R. Matyssek (2009), Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abien (L.) Karst.) needle epicuticular wax physicochemical characteristics, Environ. Pollut., 157, 16571665.
  • Personne, E., B. Loubet, B. Herrmann, M. Mattsson, J. K. Schjoerring, E. Nemitz, M. A. Sutton, and P. Cellier (2009), Surfatm-NH3: A model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale, Biogeosciences, 6, 13711388.
  • Pleijel, H., H. Danielsson, L. Emberson, M. R. Ashmore, and G. Mills (2007), Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato, Atmos. Environ., 41, 30223040.
  • Rastogi, S. K., B. N. Gupta, T. Husain, H. Chandra, N. Mathur, B. S. Pangtey, S. V. Chandra, and N. Grag (1991), A cross-sectional study of pulmonary function among workers exposed to multimetals in the glass bangle industry, Am. J. Ind. Med., 20, 391399.
  • Rochette, P., E. Pattey, R. L. Desjardins, L. M. Dwyer, D. W. Stewart, and P. A. Dubé (1991), Estimation of maize (Zea mays L.) canopy conductance by scaling up leaf stomatal conductance, Agr. Forest. Meteorol., 54, 241261.
  • Simspon, D., et al. (2012), The EMEP MSC-W chemical transport model– Technical description, Atmos. Chem. Phys., 12, 78257865.
  • Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford (2007), Indirect radiative forcing of climate change through ozone effects on the land-carbon sink, Nature, 448, 791795.
  • Stella, P., et al. (2011a), Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: The Surfatm-O3 model, Biogeosciences, 8, 28692886.
  • Stella, P., B. Loubet, E. Lamaud, P. Laville, and P. Cellier (2011b), Ozone deposition onto bare soil: A new parameterization, Agric. For. Meteorol., 151, 669681.
  • Stella, P., et al. (2012), Comparison of methods for the determination of NO-O3-NO2 fluxes and chemical interactions over a bare soil, Atmos. Meas. Tech., 5, 12411257.
  • Stella, P., M. Kortner, C. Ammann, T. Foken, F. X. Meixner, and I. Trebs (2013), Measurements of nitrogen oxides and ozone fluxes by eddy covariance at a meadow: Evidence for an internal leaf resistance to NO2, Biogeosci. Discuss., 10, 44614514.
  • Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.
  • Tuovinen, J. P., M. R. Ashmore, L. D. Emberson, and D. Simpson (2004), Testing and improving the EMEP ozone deposition module, Atmos. Environ., 38, 23732385.
  • Uddling, J., M. Hall, G. Wallin, and P. E. Karlsson (2005), Measuring and modelling stomatal conductance and photosynthesis in mature birch in Sweden, Agric. For. Meteorol., 132, 115131.
  • Van Dingenen, R., F. J. Dentener, F. Raes, M. C. Krol, L. Emberson, and J. Cofala (2009), The global impact of ozone on agricultural crop yields under current and future air quality legislation, Atmos. Environ., 43, 604618.
  • Vitale, M., G. Gerosa, A. Ballarin-Denti, and F. Manes (2005), Ozone uptake by an evergreen Mediterranean forest (Quercus ilex L.) in Italy – Part II: Flux modeling. Upscaling leaf to canopy ozone uptake by a process-based model, Atmos. Environ., 39, 32673278.
  • Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water-vapor transfer, Q. J. Roy. Meteorol. Soc., 106, 85100.
  • Wieser, G., and L. D. Emberson (2004), Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies, Atmos. Environ., 38, 23392348.
  • Wild, O. (2007), Modelling the global tropospheric ozone budget: Exploring the variability in current models, Atmos. Chem. Phys., 7, 26432660.
  • Wittig, V. E., E. A. Ainsworth, S. L. Naidu, D. F. Karnosky, and S. P. Long (2009), Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis, Global Change Biol., 15, 396424.
  • Wolfe, G. M., J. A. Thornton, M. McKay, and A. H. Goldstein (2011), Forest-atmosphere exchange of ozone: Sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry, Atmos. Chem. Phys., 11, 78757891.
  • Zapletal, M., et al. (2011), Ozone flux over a Norway spurce forest and correlation with net ecosystem production, Environ. Pollut., 159, 10241034.
  • Zeller, K. F., and N. T. Nikolov (2000), Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapour above a subalpine forest ecosystem, Environ. Pollut., 107, 120.
  • Zhang, L., J. R. Brook, and R. Vet (2002), On ozone dry deposition with emphasis on non-stomatal uptake and wet canopies, Atmos. Environ., 36, 47874799.