Advertisement

Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

Authors


Corresponding author: L. Hou, State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China. (ljhou@sklec.ecnu.edu.cn)

Abstract

[1] Anaerobic ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g−1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94–6.61 nmol N g−1 h−1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%–12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

Ancillary