SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    B. Alspach and R. J. Sutcliffe, Vertex-transitive graphs of order 2p, Ann New York Acad Sci 319 (1979), 1827.
  • 2
    N. L. Biggs, Algebraic Graph Theory, 2nd edn., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1986.
  • 3
    P. J. Cameron, G. R. Omidi, and B. Tayfeh-Rezaie, 3-Design from PGL(2, q), The Electronic J Combin 13 (2006), #R50.
  • 4
    C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans Amer Math Soc 158 (1971), 247256.
  • 5
    Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J Combin Theory Ser B 42 (1987), 196211.
  • 6
    M. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J Combin Math Combin Comput 40 (2002), 4163.
  • 7
    M. D. Conder, C. H Li, and C. E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Pro Edinburgh Math Soc 43 (2000), 129138.
  • 8
    J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
  • 9
    Y. Q. Feng, J. H. Kwak, X. Y. Wang, and J. X. Zhou, Tetravalent half-arc-transitive graphs of order inline image, J Algebraic Comb 33 (2011), 543553.
  • 10
    Y. Q. Feng and Y. T. Li, One-regular graphs of square-free order of prime valency, European J Combin 32 (2011), 265275.
  • 11
    R. Frucht, J. E. Graver, and M. E. Watkins, The groups of the generalized Petersen graphs, Proc Cambridge Philos Soc 70 (1971), 211218.
  • 12
    C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981), 243256.
  • 13
    B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
  • 14
    C. H. Li, Z. Liu, and Z. P. Lu, Tetravalent edge-transitive Cayley graphs of square free order, Discrete Math 312 (2012), 19521967.
  • 15
    C. H. Li, D. Marušič, and J. Morris, Classifying arc-transitive circulants of square-free order, J Algebraic Combin 14 (2001), 145151.
  • 16
    C. H. Li, S. J. Song, and D. J. Wang, A characterization of metacirculants, J Comnin Theory A 120 (2013), 3948.
  • 17
    Y. T. Li and Y. Q. Feng, Pentavalent one-regular graphs of square-free order, Algebra Colloq 17 (2010), 515524.
  • 18
    D. Marušič and R. Scapellato, Classifying vertex-transitivve graphs whose order is a product of two primes, Combinatorica 14(2) (1994), 187201.
  • 19
    C. E. Praeger, R. J. Wang, and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J Combin Theory Ser B 58 (1993), 299318.
  • 20
    C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J Combin Theory Ser B 59 (1993), 245266.
  • 21
    M. Suzuki, On a class of doubly transitive groups, Ann Math 75(1) (1962), 105145.
  • 22
    J. Turner, Point-symmetric graphs with a prime number of points, J Combin Theory 3 (1967), 136145.
  • 23
    J. X. Zhou and Y. Q. Feng, Cubic vertex-transitive graphs of order inline image, J Graph Theory 65 (2010), 285302.
  • 24
    J. X. Zhou and Y. Q. Feng, Cubic one-regular graphs of order twice a square-free integer, Sci China Ser A: Math 51 (2008), 10931100.