SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    G. Araujo, M. Noy, O. Serra, A geometric construction of large vertex transitive graphs of diameter two, J Combin Math Combin Comput 57 (2006), 97102.
  • 2
    T. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.
  • 3
    N. L. Biggs, Algebraic Graph Theory, 2nd edn., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
  • 4
    W. G. Brown, On graphs that do not contain a Thompsen graph, Canad Math Bull 9 (1966), 281285.
  • 5
    J. D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
  • 6
    M. Giulietti, S. Marcugini, F. Pambianco, S. Zhou, Unitary graphs and classification of a family of symmetric graphs with complete quotients, J Algebraic Combin, in press, DOI: 10.1007/s10801-012-0422-9.
  • 7
    P. R. Hafner, Geometric realization of the graphs of McKay-Miller-Širáň, J Combin Theory (B) 90 (2004), 223232.
  • 8
    D. R. Hughes, F. C. Piper, Projective Planes, Springer, New York, 1973.
  • 9
    G. Kiss, I. Kovács, K. Kutnar, J. Ruff, P. Šparl, A note on a geometric construction of large Cayley graphs of given degree and diameter, Stud Univ Babes-Bolyai Math 54 (2009), 7784.
  • 10
    B. D. McKay, M. Miller, J. Širáň, A note on large graphs of diameter two and given maximum degree, J Combin Theory (B) 74 (1998), 110118.
  • 11
    M. Miller, J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electro J Comb (2005), #DS14.
  • 12
    M. E. O'Nan, Automorphisms of unitary block designs, J Algebra 20 (1972), 495511.
  • 13
    D. E. Taylor, Unitary block designs, J Combin Theory (A) 16 (1974), 5156.