SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P. C. B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination, J Graph Theory 46 (2004), 207210.
  • 2
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman, San Francisco, CA 1979.
  • 3
    W. Goddard and M. A. Henning, Domination in planar graphs with small diameter, J Graph Theory 40 (2002), 125.
  • 4
    T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York 1998.
  • 5
    M. A. Henning, Graphs with large total domination number, J Graph Theory 35(1) (2000), 2145.
  • 6
    M. A. Henning, Recent results on total domination in graphs: A survey, Discrete Math 309 (2009), 3263.
  • 7
    M. A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, J Graph Theory 59 (2008), 326348.
  • 8
    M. A. Henning and A. Yeo, A transition from total domination in graphs to transversals in hypergraphs, Quaestiones Mathematicae 30 (2007), 417436.
  • 9
    M. A. Henning and A. Yeo, Total domination in graphs. To be published by Springer.
  • 10
    A. J. Hoffman and R. R. Singleton, On Moore graphs with diameter 2 and 3, IBM J Res Devel 5 (1960), 497504.
  • 11
    R. R. Singleton, There is no irregular Moore graph. Amer Math Monthly 75 (1968), 4243.
  • 12
    S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs, Combinatorica 27 (2007), 473487.
  • 13
    W. J. Desormeaux, Total domination in graphs and graph modifications, Ph. D. thesis, University of Johannesburg, December 2011.