Removable edges in 3-connected graphs



An edge e of a 3-connected graph G is said to be removable if G - e is a subdivision of a 3-connected graph. If e is not removable, then e is said to be nonremovable. In this paper, we study the distribution of removable edges in 3-connected graphs and prove that a 3-connected graph of order n ≥ 5 has at most [(4 n — 5)/3] nonremovable edges.