Journal of Graph Theory

Cover image for Journal of Graph Theory

Summer 1980

Volume 4, Issue 2

Pages fmi–fmi, 127–250

  1. Masthead

    1. Top of page
    2. Masthead
    3. Articles
    1. You have free access to this content
      Masthead (page fmi)

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040201

  2. Articles

    1. Top of page
    2. Masthead
    3. Articles
    1. On the crossing numbers of products of cycles and graphs of order four (pages 145–155)

      Lowell W. Beineke and Richard D. Ringeisen

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040203

    2. A determination of the toroidal k-metacyclic groups (pages 165–172)

      Jonathan L. Gross and Samuel J. Lomonaco Jr.

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040205

    3. Locally petersen graphs (pages 173–187)

      J. I. Hall

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040206

    4. Number of labeled 4-regular graphs (pages 203–212)

      R. C. Read and N. C. Wormald

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040208

    5. Separation of graphs into three components by the removal of edges (pages 213–218)

      Donald L. Goldsmith, Bennet Manvel and Vance Faber

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040209

    6. Line-graphical degree sequences (pages 219–232)

      Douglas Bauer

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040210

    7. On ramsey numbers of forests versus nearly complete graphs (pages 233–239)

      Gary Chartrand, Ronald J. Gould and Albert D. Polimeni

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040211

    8. A note on generalized line graphs (pages 243–245)

      Peter J. Cameron

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040213

    9. Two sets of graceful graphs (pages 247–250)

      Charles Delorme

      Version of Record online: 3 OCT 2006 | DOI: 10.1002/jgt.3190040214

SEARCH

SEARCH BY CITATION