SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Yutong Gong, Mingming Li, Haoran Li, Yong Wang, Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation, Green Chem., 2015, 17, 2, 715

    CrossRef

  2. 2
    Nicole E. Braml, Linus Stegbauer, Bettina V. Lotsch, Wolfgang Schnick, Synthesis of Triazine-Based Materials by Functionalization with Alkynes, Chemistry - A European Journal, 2015, 21, 19
  3. 3
    Nicole E. Braml, Wolfgang Schnick, New Heptazine Based Materials with a Divalent Cation – Sr[H2C6N7O3]2·4H2O and Sr[HC6N7(NCN)3]·7H2O, Zeitschrift für anorganische und allgemeine Chemie, 2013, 639, 2
  4. 4
    Anke Schwarzer, Tatyana Saplinova, Edwin Kroke, Tri-s-triazines (s-heptazines)—From a “mystery molecule” to industrially relevant carbon nitride materials, Coordination Chemistry Reviews, 2013, 257, 13-14, 2032

    CrossRef

  5. 5
    Yong Wang, Xinchen Wang, Markus Antonietti, Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie, Angewandte Chemie, 2012, 124, 1
  6. 6
    Yong Wang, Xinchen Wang, Markus Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angewandte Chemie International Edition, 2012, 51, 1
  7. 7
    Xinchen Wang, Siegfried Blechert, Markus Antonietti, Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis, ACS Catalysis, 2012, 2, 8, 1596

    CrossRef

  8. 8
    Sophia J. Makowski, Arne Schwarze, Peter J. Schmidt, Wolfgang Schnick, Rare-Earth Melonates LnC6N7(NCN)3·xH2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Tb; x = 8–12): Synthesis, Crystal Structures, Thermal Behavior, and Photoluminescence Properties of Heptazine Salts with Trivalent Cations, European Journal of Inorganic Chemistry, 2012, 2012, 11
  9. 9
    Corinna Clauss, Horst Schmidt, Anke Schwarzer, Edwin Kroke, Copper(II) Melonates Cu3[C6N7(NCN)3]2·8H2O and [Cu(C2H8N2)2]3[C6N7(NCN)3]2·4H2O – Using the Terminal Cyano Group of the[C6N7(NCN)3]3– Ion for Complexation , Zeitschrift für anorganische und allgemeine Chemie, 2011, 637, 14-15
  10. 10
    Corinna Clauss, Jörg Wagler, Marcus Schwarz, Anke Schwarzer, Edwin Kroke, Lithium Melonate, Li3[C6N7(NCN)3]·6H2O – Synthesis, Crystal Structure and Thermal Properties of a Novel Precursor for Graphitic Carbon Nitrides, Zeitschrift für anorganische und allgemeine Chemie, 2010, 636, 1
  11. 11
    Andreas Sattler, Wolfgang Schnick, On the Formation and Decomposition of the Melonate Ion in Cyanate and Thiocyanate Melts and the Crystal Structure of Potassium Melonate, K3[C6N7(NCN)3], European Journal of Inorganic Chemistry, 2009, 2009, 33
  12. 12
    Sophia J. Makowski, Wolfgang Schnick, Rb3[C6N7(NCN)3]·3H2O and Cs3[C6N7(NCN)3]·3H2O – Synthesis, Crystal Structure and Thermal Behavior of Two Novel Alkali Melonates, Zeitschrift für anorganische und allgemeine Chemie, 2009, 635, 13-14
  13. 13
    Wenxu Zheng, Ning-Bew Wong, Wai-Kee Li, Anmin Tian, Absorption spectra of tri-s-triazines: time dependent density functional theory calculations, New Journal of Chemistry, 2006, 30, 9, 1307

    CrossRef

  14. 14
    Elisabeta Horvath-Bordon, Edwin Kroke, Ingrid Svoboda, Hartmut Fuess, Ralf Riedel, Potassium melonate, K3[C6N7(NCN)3]·5H2O, and its potential use for the synthesis of graphite-like C3N4 materials, New Journal of Chemistry, 2005, 29, 5, 693

    CrossRef

  15. 15
    Jens Weber, Michael J. Bojdys, Arne Thomas, Polymeric Frameworks: Toward Porous Semiconductors,