The organization of the octavolateralis area in actinopterygian fishes: A new interpretation


  • Catherine A. McCormick

    1. Division of Biological Sciences, the University of Michigan, Ann Arbor, Michigan 48109
    Current affiliation:
    1. Department of Anatomy, Georgetown University Schools of Medicine and Dentistry, 3900 Reservoir Rd, NW, Washington, DC 20007
    Search for more papers by this author


The octavolateralis area of actinopterygian fishes can be subdivided into a dorsal lateralis area composed of first-order lateral line nuclei, and a ventral octavus area composed of nuclei receiving first-order input from the eighth nerve. Three patterns of organization of the lateralis area are recognized in the present study. The organization of this area in polypteriforms and chondrosteans is similar to that in chondrichthyans. On the basis of recent studies in chondrichthyans (McCready and Boord, '76; Boord and Campbell, '77; Bodznick and Northcutt, '80), it is hypothesized that this pattern reflects the subdivision of the lateral line system into mechanoreceptive and electroreceptive portions. As petromyzontid agnathans also share this pattern of organization, it is hypothesized that they are elecroreceptive. The lateralis area of holosteans and nonelectroreceptive teleosts exhibits a second organizational pattern that is hypothesized to reflect the loss of the electroreceptive portion of the lateral line system; it is suggested that electroreception was lost sometime between the chondrostean and teleostean radiations. Each group of electroreceptive teleosts is believed to have evolved electroreception independently (Bullock, '74), a situation that is reflected centrally by a third organizational pattern within the lateralis area, which is distinctly different from that of early radiations of electroreceptive fishes.

The octavus area of actinopterygians exhibits two patterns of organization–that of polypteriforms, chondrosteans, and holosteans, and that of teleosts. The functional significance of these patterns has yet to be elucidated.