Patterns of spatial and temporal cranial muscle development in the African clawed frog, Xenopus laevis (Anura: Pipidae)

Authors

  • Janine M. Ziermann,

    Corresponding author
    1. Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Erbertstr. 1, D-07743 Jena, Germany
    • Institut für Spezielle Zoologie Friedrich-Schiller-Universität Erbertstr. 1, D-07743 Jena, Germany
    Search for more papers by this author
  • Lennart Olsson

    1. Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Erbertstr. 1, D-07743 Jena, Germany
    Search for more papers by this author

Abstract

The African Clawed Toad, Xenopus laevis, has been a major vertebrate model organism for developmental studies for half a century. Because most studies have focused on the early stages of development, this has had the effect that many aspects of organogenesis and later development remain relatively poorly known in this species. In particular, little is known about cranial muscle development even at the level of morphology and histological differentiation of muscle anlagen and muscle fibers. In this study, we document the morphogenesis and histological differentiation of cranial muscles in X. laevis. We provide a detailed account of the timing of development for each of the cranial muscles, and also describe a new muscle, the m. transversus anterior. The cranial musculature of X. laevis larvae generally develops in a rostrocaudal sequence. The first muscles to differentiate are the extrinsic eye muscles. Muscles of the mandibular and hyoid arches develop almost simultaneously, and are followed by the muscles of the branchial arches and the larynx, and by the mm. geniohyoideus and rectus cervicis. Despite the fact that differentiation starts at different stages in the different muscles, most are fully developed at Stage 14. These baseline data on the timing of muscle differentiation in the X. laevis can serve as a foundation for comparative studies of heterochronic changes in cranial muscle development in frogs and other lissamphibians. J. Morphol., 2007. © 2007 Wiley-Liss, Inc.

Ancillary