SEARCH

SEARCH BY CITATION

Keywords:

  • vertebrae;
  • development;
  • paleontology;
  • variation

Abstract

Comparison of embryonic specimens with juvenile and mature specimens of other skates indicates that the relative developmental sequence of events is maintained among several taxa within larger clades. However, there is a fundamental difference between the pattern of chondrification and the pattern of calcification in skates. Early in ontogeny a short synarcual surrounds the first free vertebral centrum. Additional neural arch segments are incorporated from anterior to posterior and the relative length of the synarcual cartilage to total length of the body normalizes early. A secondary direction of chondrification, from ventral to dorsal, is also present. Juveniles and subadults show that synarcual calcification is relatively late compared to the calcification of other regions of the skeleton and proceeds from lateral to medial. Comparison with extinct taxa also indicates that there is a decrease in vertebral centrum involvement with the synarcual cartilage over the evolutionary history of the clade. Results from exploratory analyses of morphospace and taxonomy reveal that phylogeny explains part, but not all, of the data on the synarcual in Rajidae. There is evidence of individual and ontogenetic variation among all species of skates examined, however, phylogenetically informative variation prevails. Comparison with other batoids demonstrates a trend where the number of vertebral centra flanked by the synarcual cartilage decreases among more derived taxa indicating a high degree of convergent morphology among batoids with potential functional significance. J. Morphol., 2011. © 2011 Wiley-Liss, Inc.