• somites;
  • sclerotome;
  • long-term fate mapping;
  • salamander;
  • vertebral column


The segmental series of somites in the vertebrate embryo gives rise to the axial skeleton. In amniote models, single vertebrae are derived from the sclerotome of two adjacent somites. This process, known as resegmentation, is well-studied using the quail–chick chimeric system, but the presumed generality of resegmentation across vertebrates remains poorly evaluated. Resegmentation has been questioned in anamniotes, given that the sclerotome is much smaller and lacks obvious differentiation between cranial and caudal portions. Here, we provide the first experimental evidence that resegmentation does occur in a species of amphibian. Fate mapping of individual somites in the Mexican axolotl (Ambystoma mexicanum) revealed that individual vertebrae receive cells from two adjacent somites as in the chicken. These findings suggest that large size and segmentation of the sclerotome into distinct cranial and caudal portions are not requirements for resegmentation. Our results, in addition to those for zebrafish, indicate that resegmentation is a general process in building the vertebral column in vertebrates, although it may be achieved in different ways in different groups. J. Morphol. 275:141–152, 2014. © 2013 Wiley Periodicals, Inc.