• DNA origami;
  • single-molecular recognition;
  • AFM;
  • tether effect

DNA origami shows tremendous promise as templates for the assembly of nano-components and detection of molecular recognition events. So far, the method of choice for evaluating these structures has been atomic force microscopy (AFM), a powerful tool for imaging nanoscale objects. In most cases, tethered targets on DNA origami have proven to be highly effective samples for investigation. Still, while maximal assembly of the nanostructures might benefit from the greatest flexibility in the tether, AFM imaging requires a sufficient stability of the adsorbed components. The balance between the tether flexibility and sample stability is a major, poorly understood, concern in such studies. Here, we investigated the dependence of the tethering length on molecular capture events monitored by AFM. In our experiments, single biotin molecules were attached to DNA origami templates with various linker lengths of thymidine nucleotides, and their interaction with streptavidin was observed with AFM. Our results show that the streptavidin-biotin complexes are easily detected with short tethered lengths, and that their morphological features clearly change with the tethering length. We identify the functionally useful tether lengths for these investigations, which are also expected to prove useful in the construction and further application of DNA origami in bio-nanotechnology studies. Copyright © 2013 John Wiley & Sons, Ltd.