A new EPI-based dynamic field mapping method: Application to retrospective geometrical distortion corrections

Authors

  • Franck Lamberton PhD,

    1. Unité Mixte de Recherche (UMR)6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Université de Caen et Paris 5, Caen, France
    Search for more papers by this author
  • Nicolas Delcroix PhD,

    1. Unité Mixte de Recherche (UMR)6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Université de Caen et Paris 5, Caen, France
    Search for more papers by this author
  • Denis Grenier PhD,

    1. UMR5220, CNRS, Université Claude Bernard Lyon I, Ecole Supérieure de Chimie, Physique et Electronique (ESCPE), Villeurbanne, France
    Search for more papers by this author
  • Bernard Mazoyer MD, PhD,

    1. Unité Mixte de Recherche (UMR)6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Université de Caen et Paris 5, Caen, France
    2. Unité Imagerie par Résonance Magnétique (IRM), Centre Hospitalier Universitaire (CHU) de Caen, et Institut Universitaire de France
    Search for more papers by this author
  • Marc Joliot PhD

    Corresponding author
    1. Unité Mixte de Recherche (UMR)6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Université de Caen et Paris 5, Caen, France
    • UMR6194, GIP CYCERON, Bld Henri Becquerel, BP 5229, 14074 Caen CEDEX, France
    Search for more papers by this author

Abstract

Purpose

To retrospectively correct for geometrical distortions, a new dynamic field mapping method suitable for dynamic single-shot gradient-echo type echo-planar imaging (GRE-EPI) is proposed.

Materials and Methods

The method requires a single volume additional acquisition and allows the extraction of a field map from each phase volume, assuming invariance across time of the echo time-independent phase component. Performances of the method are assessed using three sets of experiments: the first tests the prerequisite and the modeling; the second tests the method with time-dependent geometrical distortions; and the third presents a comparison with two other methods.

Results

Our results legitimize the modeling procedure and demonstrate that the dynamic method is less sensitive to noise than the other methods. A theoretical explanation for this is proposed in the discussion section.

Conclusion

Given the minor increase in the acquisition time, this method is well suited for functional magnetic resonance imaging; prospective direction. J. Magn. Reson. Imaging 2007;26:747–755. © 2007 Wiley-Liss, Inc.

Ancillary