SEARCH

SEARCH BY CITATION

REFERENCES

  • Bettinger D, Bernard B, Riethmuller D, Greslin I, Gay C, Lab M, Seilles E, Mougin C. 1999. Human papillomavirus detection by non isotopic in situ hybridization, in situ hybridization with signal amplification and in situ polymerase chain reaction. Eur J Histochem 43: 185198.
  • Biedermann K, Dandachi N, Trattner M, Vogl G, Doppelmayr H, More E, Staudach A, Dietze O, Hauser-Kronberger C. 2004. Comparison of real-time PCR signal-amplified in situ hybridization and conventional PCR for detection and quantification of human papillomavirus in archival cervical cancer tissue. J Clin Microbiol 42: 37583765.
  • Birner P, Bachtiary B, Dreier B, Schindl M, Joura EA, Breitenecker G, Oberhuber G. 2001. Signal-amplified colorimetric in situ hybridization for assessment of human papillomavirus infection in cervical lesions. Mod Pathol 14: 702709.
  • Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV. 1995. Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. J Natl Cancer Inst 87: 796802.
  • Brown DR, Bryan JT, Cramer H, Katz BP, Handy V, Fife KH. 1994. Detection of multiple human papillomavirus types in condylomata acuminata from immunosuppressed patients. J Infect Dis 170: 759765.
  • Brown DR, Schroeder JM, Bryan JT, Stoler MH, Fife KH. 1999. Detection of multiple human papillomavirus types in condylomata acuminata lesions from otherwise healthy and immunosuppressed patients. J Clin Microbiol 37: 33163322.
  • Cooper K, Herrington C, Strickland J, Evens M, McGee J. 1991. Episomal and integrated human papillomavirus in cervical neoplasia shown by non-isotopic in situ hybridization. J Clin Path 44: 990996.
  • Evans M, Mount S, Beatty B, Cooper K. 2002. Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod Pathol 15: 13391347.
  • Evans MF, Aliesky HA, Cooper K. 2003. Optimization of biotinyl-tyramide-based in situ hybridization for sensitive background-free applications on formalin-fixed, paraffin-embedded tissue specimens. BMC Clin Pathol 3: 2.
  • Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, Schiffman MH, Scott DR, Apple RJ. 2000. Improved amplification of genital human papillomaviruses. J Clin Microbiol 38: 357361.
  • Plummer TB, Sperry AC, Xu HS, Lloyd RV. 1998. In situ hybridization detection of low copy nucleic acid sequences using catalyzed reporter deposition and its usefulness in clinical human papillomavirus typing. Diagn Mol Pathol 7: 7684.
  • Roden R, Yutzy WT, Fallon R, Inglis S, Lowy D, Schiller J. 2000. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 270: 254257.
  • Stupar M. 1989. The presence of human papillomavirus-16 genome in the CaSki cervical carcinoma DNA. Iugoslav Physiol Pharmacol Acta 25: 4552.
  • Unger ER, Vernon SD, Lee DR, Miller DL, Reeves WC. 1998. Detection of human papillomavirus in archival tissues: Comparison of in situ hybridization and polymerase chain reaction. J Histochem Cytochem 46: 535540.
  • Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJF, Peto J, Meijer CJLM, Muñoz N. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 1219.
  • Wiedorn KH, Kuhl H, Galle J, Caselitz J, Vollmer E. 1999. Comparison of in-situ hybridization, direct and indirect in-situ PCR as well as tyramide signal amplification for the detection of HPV. Histochem Cell Biol 111: 8995.
  • Yee CI, Krishnan-Hewlett I, Baker CC, Schlegel R, Howley PM. 1985. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol 119: 361366.
  • zur Hausen H. 1996. Viruses in human tumors: Reminiscences and perspectives. In: VandewoudeGF, KleinG, editors. Advances in cancer research, Vol. 68. San Diego, CA: Academic Press, Inc. pp 122.