SEARCH

SEARCH BY CITATION

Keywords:

  • overlapping Yee;
  • FDTD;
  • anisotropic material;
  • Maxwell solver;
  • metamaterial cloaking

SUMMARY

A novel stable anisotropic finite-difference time-domain (FDTD) algorithm based on the overlapping cells is developed for solving Maxwell's equations of electrodynamics in anisotropic media with interfaces between different types of materials, such as the interface between anisotropic dielectrics and dispersive medium or perfect electric conductor (PEC). The previous proposed conventional anisotropic FDTD methods suffer from the late-time instability due to the extrapolation of the field components near the material interface. The proposed anisotropic overlapping Yee FDTD method is stable, as it relies on the overlapping cells to provide the collocated field values without any interpolation or extrapolation. Our method has been applied to simulate electromagnetic invisibility cloaking devices with both anisotropic dielectrics and PEC included in the computational domain. Numerical results and eigenvalue analysis confirm that the conventional anisotropic FDTD method is weakly unstable, whereas our method is stable. Copyright © 2013 John Wiley & Sons, Ltd.