SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Li L, Brown JG, Uttamchandani D. Study of scratch drive actuator force characteristics. J Micromech Microeng 2002; 12:736741.
  • 2
    Yeh R, Hollar S, Pister KSJ. single mask, large force, and large displacement electrostatic linear inchworm motors. J Microelectromech Syst 2002; 11:330335.
  • 3
    Mita M, Arai M, Tensaka S, Kobayashi D, Fujita H. Micromachined impact microactuator driven by electrostatic force. J Microelectromech Syst 2003; 12:3741.
  • 4
    Lee KB, Cho Y. Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution. J Microelectromech Syst 2001; 10:128136.
  • 5
    Hou MTK, Yeh JA. An in-plane rotary comb-drive actuator for a variable optical attenuator. J Micro/Nanolith MEMS MOEMS 2008; 7(4): article no. 043015.
  • 6
    Yeh JA, Chen CN, Lui YS. Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension. J Micromech Microeng 2005; 15:201206.
  • 7
    Peng B, Zhang QS, Zhou W, Hao XH, Ding L. A modified correlation critertion for digital image correlation considering the effect of lighting variations in deformation measurements. Opt Eng 2012; 51(1):article no. 017004.
  • 8
    Abbas A, Dufour I, Sarraute E. Comparison of torque optimised electromagnetic and electrostatic micromotors. J Micromech Microeng 1995; 12:192195.
  • 9
    Bell DJ, Lu TJ, Fleck NA, Spearing SM. MEMS actuators and sensors: obervations on their performance and selection for purpose. J Micromech Microeng 2005; 15:S153S164.
  • 10
    Chuang WC, Lee HL, Chang PZ, Hu YC. Review on the modeling of electrostatic MEMS. Sensors 2010; 10:61496171.
  • 11
    Rocha LA, Cretu E, Wolffenbuttel RF. Behavioural analysis of the pull-in dynamic transition. J Micromech Microeng 2004; 14:S37S42.
  • 12
    Ghazavi MR, Rezazadeh G, Azizi S. Finite element analysis of static and dynamic pull-in instability of a fixed-fixed micro beam considering damping effects. Sensors & Transducers 2009; 103:132143.
  • 13
    Puers R, Lapadatu D. Electrostatic forces and their effects on capacitive mechanical sensors. Sensor Actuator Phys 1996; 56:203210.
  • 14
    Peng B, Li Y, Liu S, Guo ZY, Ding L. The roles of crosslinks in the buckling behaviors and load transferring mechanisms of double-walled nanotubes under compression. J Comput Mater Sci 2012; 55:9599.
  • 15
    Nathanson HC, Newell WE, Wickstrom RA, Davis JR. The resonant gate transistor. IEEE Trans Electron 1967; 14:117133.
  • 16
    Hung ES, Senturia SD. Extending the travel range of analog-tuned electrostatic actuators. J Microelectromech Syst 1999; 8:497505.
  • 17
    Zhang Y, Zhao YP. Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensor Actuator Phys 2006; 127:366380.
  • 18
    Cheng J, Zhe J, Wu XT. Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators. J Micromech Microeng 2004; 14:5768.
  • 19
    Chowdhury S, Ahmadi M, Miller WC. Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model. J Microelectromech Syst 2006; 15:639651.
  • 20
    Pamidighantam S, Puers R, Baert K, Tilmans HAC. Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 2002; 12:458464.
  • 21
    Osterberg PM, Senturia SD. M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Sys 1997; 6:107118.
  • 22
    Osterberg PM. Electrostatically actuated microelectromechanical test structures for material property measurement. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, 1995.
  • 23
    Rahman EMA, Younis MI, Nayfeh AH. Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 2002; 12:759766.
  • 24
    Degani OB, Nemirovsky Y. Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sensor Actuator Phys 2002; 97–98:569578.
  • 25
    Peng B, Ding L, Guo ZY. Design and modeling of carbon nanotube electromechanical switches for logic device application. J Comput Theor Nanos 2011; 8:19671972.
  • 26
    Peng B, Ding L, Guo ZY. Resonant modelling of two types of tunable carbon nanotube electromechanical osicllators. Micro Nano Lett 2010; 5:365369.
  • 27
    Ke CH, Espinosa HD, Pugno N. Numerical analysis of nanotube based NEMS devices—part II: role of finite kinematics, stretching and charge concentrations. Trans ASME 2005; 72:726731.
  • 28
    Mahony CO, Hill M, Duane R, Mathewson A. Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams. J Micromech Microeng 2003; 13:S75S80.
  • 29
    Hu YC, Chang PZ, Chuang WC. An approximate analytical solution to the pull-in voltage of a micro bridge with an elastic boundary. J Micromech Microeng 2007; 17:18701876.
  • 30
    Tilmans HAC, Legtenberg R. Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. theory and performance. Sensor Actuator Phys 1994; 45:6784.
  • 31
    Legtenberg R, Gilbert J, Senturia SD, Elwenspoek M. Electrostatic curved electrode actuators. J Microelectromech Syst 1997; 6:257265.
  • 32
    Wei LC, Mohammad AB, Kassim NM. Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam. ICSE 2002; 233238.
  • 33
    Liu YJ, Kipke DW, Zhang Y, Sandhage KH. The kinetic of incongruent reduction of tungsten carbide via reaction with a hafnium-copper melt. Acta Mater 2012; 57:39243931.
  • 34
    Jin TG, Lu K. Chromium deposition and interfacial interactions of an electrolyte-air electrode-interconnect tri-layer for solid oxide fuel cells. J Power Sources 2012; 202:143148.
  • 35
    Kattan PI. Matlab Guide to Finite Elements. Springer-Verlag: Berlin, 2008; 119140.
  • 36
    Hutton DV. Fundamentals of Finite Element Analysis. McGraw-Hill: New York, 2004; 8190.