Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia

Authors

  • S. Corti,

    Corresponding author
    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    • Dipartimento di Scienze Neurologiche, Università di Milano, Padiglione Ponti, Ospedale Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy
    Search for more papers by this author
  • F. Locatelli,

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    Search for more papers by this author
  • C. Donadoni,

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    Search for more papers by this author
  • S. Strazzer,

    1. I.R.C.C.S. Eugenio Medea, Bosisio Parini, Lecco, Italy
    Search for more papers by this author
  • S. Salani,

    1. I.R.C.C.S. Eugenio Medea, Bosisio Parini, Lecco, Italy
    Search for more papers by this author
  • R. Del Bo,

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    Search for more papers by this author
  • M. Caccialanza,

    1. Servizio di Fotoradioterapia, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, Milano, Italy
    Search for more papers by this author
  • N. Bresolin,

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    2. I.R.C.C.S. Eugenio Medea, Bosisio Parini, Lecco, Italy
    Search for more papers by this author
  • G. Scarlato,

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    Search for more papers by this author
  • G.P. Comi

    1. Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, I.R.C.C.S. Ospedale Maggiore Policlinico, and Centro di Eccellenza per lo Studio delle Malattie Neurodegenerative, Milano, Italy
    Search for more papers by this author

Abstract

There is now evidence that bone marrow (BM) can generate cells expressing neuronal antigens in adult mouse brain. In the present study, we examined the spinal cord and dorsal root ganglia (DRG) of adult mice 3 months after BM cell transplantation from transgenic donor mice expressing the enhanced green fluorescent protein (GFP). To determine whether GFP+ cells acquire neuroectodermal phenotypes, we tested, by immunocytochemistry followed by confocal analysis, the coexpression of the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal markers NeuN, neurofilament (NF), and class III β-tubulin (TuJ1). Rare GFP+ cells coexpressing TuJ1, NF, and NeuN were found both in spinal cord and in sensory ganglia. These cells have small dimensions and short cytoplasmic processes, probably reflecting an immature phenotype. Double GFP and GFAP positivity was found only in spinal cord. To determine whether cell fusion with endogenous cells occurred, we investigated the nuclear content of cells coexpressing GFP and neuronal or astrocytic markers, demonstrating that these cells have only one nucleus and a DNA ploidy that it is not different from that of surrounding neurons and astrocytes. Large numbers of GFP+ cells are also positively stained for F4/80, a microglial-recognizing antibody, and present a characteristic microglial-like morphology both in spinal cord and, with a higher frequency, in sensory ganglia. These data support a potential role for BM-derived stem cells in spinal cord neuroneogenesis. They also confirm that the microglial compartment within the CNS and in DRG undergoes a relatively fast turnover, with the contribution of hematopoietic stem cells. Both these findings might prove useful for the development of treatments for spinal cord neurodegenerative and acquired disorders. © 2002 Wiley-Liss, Inc.

Ancillary