Exercise induces BDNF and synapsin I to specific hippocampal subfields

Authors


Abstract

To assess the relationship between brain-derived neurotrophic factor (BDNF) and synapsin I in the hippocampus during exercise, we employed a novel microsphere injection method to block the action of BDNF through its tyrosine kinase (Trk) receptor and subsequently measure the mRNA levels of synapsin I, using real-time TaqMan RT-PCR for RNA quantification. After establishing a causal link between BDNF and exercise-induced synapsin I mRNA levels, we studied the exercise-induced distribution of BDNF and synapsin I in the rodent hippocampus. Quantitative immunohistochemical analysis revealed increases of BDNF and synapsin I in CA3 stratum lucidum and dentate gyrus, and synapsin I alone in CA1 stratum radiatum and stratum laconosum moleculare. These results indicate that exercise induces plasticity of select hippocampal transsynaptic circuitry, possibly comprising a spatial restriction on synapsin I regulation by BDNF. © 2004 Wiley-Liss, Inc.

Ancillary