• dendritic cells;
  • spinal cord injury;
  • neural stem cells;
  • neurogenesis;
  • regeneration


We report a treatment for spinal cord injury involving implantation of dendritic cells (DCs), which act as antigen-presenting cells in the immune system. The novel mechanisms underlying this treatment produce functional recovery. Among the immune cells tested, DCs showed the strongest activity inducing proliferation and survival of neural stem/progenitor cells (NSPCs) in vitro. Furthermore, in DC-implanted adult mice, endogenous NSPCs in the injured spinal cord were activated for mitotic de novo neurogenesis. These DCs produced neurotrophin-3 and activated endogenous microglia in the injured spinal cord. Behavioral analysis revealed the locomotor functions of DC-implanted mice to have recovered significantly as compared to those of control mice. Our results suggest that DC-implantation exerts trophic effects, including activation of endogenous NSPCs, leading to repair of the injured adult spinal cord. © 2004 Wiley-Liss, Inc.