• HLA risk in MS;
  • myelin peptides;
  • antigen presentation;
  • HLA-transgenic mice


Susceptibility to multiple sclerosis (MS) is associated genetically with human leucocyte antigen (HLA) class II alleles, including DRB1*1501, DRB5*0101, and DQB1*0602, and it is possible that these alleles contribute to MS through an enhanced ability to present encephalitogenic myelin peptides to pathogenic T cells. HLA-DRB1*1502, which contains glycine instead of valine at position 86 of the P1 peptide-binding pocket, is apparently not genetically associated with MS. To identify possible differences between these alleles in their antigen-presenting function, we determined if T-cell responses to known DRB1*1501-restricted myelin peptides might be diminished or absent in transgenic (Tg) DRB1*1502-expressing mice. We found that Tg DRB1*1502 mice had moderate to strong T-cell responses to several myelin peptides with favorable DRB1*1501 binding motifs, notably myelin oligodendrocyte glycoprotein (MOG)-35-55 (which was also encephalitogenic), proteolipid protein (PLP)-95-116, and MOG-194-208, as well as other PLP and MOG peptides. These peptides, with the exception of MOG-194-208, were also immunogenic in healthy human donors expressing either DRB1*1502 or DRB1*1501. In contrast, the DRB1*1502 mice had weak or absent responses to peptides with unfavorable DRB1*1501 binding motifs. Overall, none of the DRB1*1501-restricted myelin peptides tested selectively lacked immunogenicity in association with DRB1*1502. These results indicate that the difference in risk association with MS of DRB1*1501 versus DRB1*1502 is not due to a lack of antigen presentation by DRB1*1502, at least for this set of myelin peptides, and suggest that other mechanisms involving DRB1*1501 may account for increased susceptibility to MS. © 2004 Wiley-Liss, Inc.