SEARCH

SEARCH BY CITATION

Keywords:

  • functional imaging;
  • in vivo spectroscopy;
  • vigabatrin;
  • gabaculine

Abstract

Vigabatrin and gabaculine, both highly specific inhibitors of GABA (γ-aminobutyric acid) transaminase, cause significant elevation of endogenous GABA levels in brain. The time course of GABA concentration after acute GABA transaminase inhibition was measured quantitatively in the α-chloralose-anesthetized rat brain using in vivo selective homonuclear polarization transfer spectroscopy. The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging (fMRI) has been considered to be coupled tightly to neuronal activation via the metabolic demand of associated glutamate transport. Correlated with the rise in endogenous GABA level after vigabatrin or gabaculine treatment, the intensity of BOLD-weighted fMRI signals in rat somatosensory cortex during forepaw stimulation was found to be reduced significantly. These results are consistent with previous findings that inhibition of GABA transaminase leads to augmented GABA release and potentiation of GABAergic inhibition. © 2004 Wiley-Liss, Inc.