Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina



The three gaseous neuromodulators nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are endogenously produced in vertebrate retinas. The NO/cyclic guanosine monophosphate (cGMP) and CO/cGMP pathways have been previously shown to interact synergistically in the turtle retina to increase cGMP levels. In this study, we examined H2S as a modulator of cGMP-like immunoreactivity (-LI) and its interactions with the NO/CO/cGMP signaling pathways in the tiger salamander retina. Stimulation with NO donor or CO significantly increased cGMP-LI from basal levels in bipolar and amacrine cells and in stratified arborizations in the inner plexiform layer. Stimulation with a combination of NO donor and CO significantly increased cGMP-LI above that seen with either stimulation alone. Nitric oxide synthase inhibitors reduced CO-induced cGMP-LI, suggesting that CO-induced cGMP-LI is not produced from direct activation of soluble guanylate cyclase. Exogenous H2S alone, from the donor NaHS, did not significantly modify cGMP-LI in dosages ranging from 2 to 1,200 μM NaHS, but there was a significant decrease in NO-induced cGMP-LI in the presence of 200 μM NaHS. This reduction of NO-induced cGMP-LI was not significantly affected by the addition of CuCl2, suggesting that the decrease was not a result of H2S and NO sequestering to form a novel nitrosothiol. NaHS did not have any significant effect on CO-induced cGMP-LI levels. Our results concur with previous studies showing synergistic interactions between NO and CO/cGMP retinal signaling pathways. We now show that H2S inhibits NO-induced cGMP-LI but not CO-induced cGMP-LI. In conclusion, all three gaseous neuromodulators have interactive roles in modulating retinal cGMP signaling. © 2009 Wiley-Liss, Inc.