SEARCH

SEARCH BY CITATION

References

  • Abaurrea J, Asín J. 2005. Forecasting local daily precipitation patterns in a climate change scenario. Climate Research 28: 183197.
  • Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224232.
  • Allen MR, Kettleborough JA, Stainforth DA. 2003. Model error in weather and climate forecast. Proceedings of the 2002 ECMWF Predictability Seminar. ECMWF: Reading.
  • Allen MR, Stott PA, Mitchell JFB, Schnur R, Delworth TL. 2000. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 417: 617620.
  • Andronova NG, Schlesinger ME. 2001. Objective estimation of the probability density function for climate sensitivity. Journal of Geophysical Research-Atmospheres 106(D19): 2260522611.
  • Arnell NW, Reynard NS. 1996. The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology 183: 397424.
  • Bárdossy A, Stehlík J, Caspary HJ. 2002. Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Climate Research 23: 1122.
  • Bárdossy A, Bogardi I, Matyasovszky I. 2005. Fuzzy rule-based downscaling of precipitation. Theoretical and Applied Climatology 82: 119129.
  • Barnett T, Malone T, Pennell W, Stammer D, Semtner B, Washington W. 2004. The effects of climate change on water resources in the west: introduction and overview. Climatic Change 62: 111.
  • Beckmann BR, Buishand TA. 2002. Statistical downscaling relationships for precipitation in the Netherlands and north Germany. International Journal of Climatology 22: 1532.
  • Beersma JJ, Buishand TA. 2003. Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Research 25: 121133.
  • Bellone E, Hughes JP, Guttorp P. 2000. A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Research 15: 112.
  • Benestad RE. 2001. A comparison between two empirical downscaling strategies. International Journal of Climatology 21: 16451668.
  • Benestad RE. 2004. Tentative probabilistic temperature scenarios for northern Europe. Tellus Series A—Dynamic Meteorology and Oceanography 56: 89101.
  • Benestad RE, Førland EJ, Hanssen-Bauer I. 2002. Empirically downscaled temperature scenarios for Svalbard. Atmospheric Science Letters 3(2): 7193, DOI: 10.1006/Asle.2002.0051.
  • Bergant K, Kajfez-Bogataj L. 2005. N-PLS regression as empirical downscaling tool in climate change studies. Theoretical and Applied Climatology 81: 1123.
  • Bergstrom S, Carlsson B, Gardelin M, Lindstrom G, Pettersson A, Rummukainen M. 2001. Climate change impacts on run-off in Sweden—assessments by global climate models, dynamical downscaling and hydrological modeling. Climate Research 16: 101112.
  • Blenkinsop S, Fowler HJ. 2007. Changes in drought frequency and severity over the British Isles projected by the PRUDENCE regional climate models. Journal of Hydrology 342: 5071.
  • Boorman BD, Sefton CEM. 1997. Recognising the uncertainty in the quantification of the effects of climate change on hydrological response. Climatic Change 35: 415434.
  • Brinkmann WAR. 2000. Modification of a correlation-based circulation pattern classification to reduce within-type variability of temperature and precipitation. International Journal of Climatology 20: 839852.
  • Brinkmann WAR. 2002. Local versus remote grid points in climate downscaling. Climate Research 21: 2742.
  • Busuioc A, Chen D, Hellström C. 2001. Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. International Journal of Climatology 21: 557578.
  • Bürger G. 1996. Expanded downscaling for generating local weather scenarios. Climate Research 7: 111128.
  • Bürger G, Chen Y. 2005. Regression-based downscaling of spatial variability for hydrologic applications. Journal of Hydrology 311: 299317.
  • Cavazos T, Hewitson BC. 2005. Performance of NCEP-NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Research 28: 95107.
  • Cawley GC, Haylock M, Dorling SR, Goodess C, Jones PD. 2003. Statistical downscaling with artificial neural networks. In Proceedings—European Symposium on Artificial Neural Networks, Bruges, Belgium, 23–25th April 2003.
  • Charles SP, Bates BC, Whetton PH, Hughes JP. 1999. Validation of a downscaling model for changed climate conditions in southwestern Australia. Climate Research 12: 114.
  • Charles SP, Bates BC, Smith IN, Hughes JP. 2004. Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrological Processes 18: 13731394.
  • Chen D, Achberger C, Räisänen J, Hellstrom C. 2006. Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: a case study of Swedish precipitation. Advances in Atmospheric Sciences 23: 5460.
  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G. 2007. Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change 81(Supplement): 16.
  • Christensen OB, Christensen JH, Machenhauer B, Botzet M. 1998. Very high-resolution regional climate simulations over Scandinavia—Present climate. Journal of Climate 11: 32043229.
  • Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN. 2004. Effects of climate change on the hydrology and water resources of the Colorado river basin. Climatic Change 62: 337363.
  • Christensen JH, Räisänen J, Iversen T, Bjørge D, Christensen OB, Rummukainen M. 2001. A synthesis of regional climate change simulations—A Scandinavian perspective. Geophysical Research Letters 28: 10031006.
  • Conway D, Wilby RL, Jones PD. 1996. Precipitation and air flow indices over the British Isles. Climate Research 7: 169183.
  • Corte-Real J, Xu H, Qian B. 1999. A weather generator for obtaining daily precipitation scenarios based on circulation patterns. Climate Research 13: 6175.
  • Coulibaly P. 2004. Downscaling daily extreme temperatures with genetic programming. Geophysical Research Letters 31: L16203, DOI: 10.1029/2004GL020075.
  • Coulibaly P, Dibike YB, Anctil F. 2005. Downscaling precipitation and temperature with temporal neural networks. Journal of Hydrometeorology 6: 483496.
  • Cowpertwait PSP. 1991. Further developments of the Neyman-Scott clustered point process for modelling rainfall. Water Resources Research 27: 14311438.
  • Cubasch U, von Storch H, Waszkewitz J, Zorita E. 1996. Estimates of climate change in southern Europe using different downscaling techniques. Climate Research 7: 129149.
  • Cunderlik JM, Simonovic SP. 2005. Hydrological extremes in a southwestern Ontario river basin under future climate conditions. Hydrological Sciences Journal 50: 631654.
  • Dehn M, Bürger G, Buma J, Gasparetto P. 2000. Impact of climate change on slope stability using expanded downscaling. Engineering Geology 55: 193204.
  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B. 2007. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change 81(Supplement 1): 5370.
  • Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellström E, de Castro M, Kucharski F, van den Hurk B. 2005. Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Climate Dynamics 25: 653670.
  • Dessai S, Hulme M. 2004. Does climate policy need probabilities? Climate Policy 4: 107128.
  • Dessai S, Lu X, Hulme M. 2005. Limited sensitivity analysis of regional climate change probabilities for the 21st century. Journal of Geophysical Research 110: D19108, DOI: 10.1029/2005JD005919.
  • Dettinger MD, Cayan DR, Meyer MK, Jeton AE. 2004. Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Climatic Change 62: 283317.
  • Diaz-Nieto J, Wilby RL. 2005. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Climatic Change 69: 245268.
  • Díez E, Primo C, García-Moya JA, Guttiérez JM, Orfila B. 2005. Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus Series A-Dynamic Meteorology and Oceanography 57(3): 409423.
  • Dibike YB, Coulibaly P. 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology 307: 145163.
  • Duan Q, Sorooshian S, Gupta VK. 1992. Effective and efficient global optimization for conceptual rainfall-run-off. Water Resources Research 28: 10151031.
  • Dubrovsky M, Buchtele J, Zalud Z. 2004. High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Climatic Change 63: 145179.
  • Easterling DR. 1999. Development of regional climate scenarios using a downscaling approach. Climatic Change 41: 615634.
  • Ekström M, Fowler HJ, Kilsby CG, Jones PD. 2005. New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Future estimates and use in impact studies. Journal of Hydrology 300: 234251.
  • Ekström M, Jones PD, Fowler HJ, Lenderink G, Buishand A, Conway D. 2007. Regional climate model data used within the SWURVE project 1: Projected changes in seasonal patterns and estimation of PET. Hydrology and Earth System Sciences 11(3): 10691083.
  • Enke W, Schneider F, Deuschländer T. 2005a. A novel scheme to derive optimized circulation pattern classifications for downscaling and forecast purposes. Theoretical and Applied Climatology 82: 5163.
  • Enke W, Deuschländer T, Schneider F, Küchler W. 2005b. Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorologische Zeitschrift 14: 247257.
  • Evans J, Schreider S. 2002. Hydrological impacts of climate change on inflows to Perth, Australia. Climatic Change 55: 361393.
  • Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD. 2002. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295: 113117.
  • Fowler HJ, Kilsby CG, O'Connell PE. 2000. A stochastic rainfall model for the assessment of regional water resource systems under changed climatic conditions. Hydrology and Earth System Sciences 4: 261280.
  • Fowler HJ, Kilsby CG. 2002. Precipitation and the North Atlantic Oscillation: a study of climatic variability in Northern England. International Journal of Climatology 22: 843866.
  • Fowler HJ, Ekström M, Kilsby CG, Jones PD. 2005a. New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. Journal of Hydrology 300: 212233.
  • Fowler HJ, Ekström M, Blenkinsop S, Smith AP. Estimating change in extreme European precipitation using a multi-model ensemble. Geophysical Research Atmospheres (in press).
  • Fowler HJ, Kilsby CG, O'Connell PE, Burton A. 2005b. A weather-type conditioned multi-site stochastic rainfall model for generation of scenarios of climatic variability and change. Journal of Hydrology 308(1–4): 5066.
  • Fowler HJ, Kilsby CG. 2007. Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change 80(3–4): 337367.
  • Fowler HJ, Kilsby CG, Stunell J. 2007. Modelling the impacts of projected future climate change on water resources in northwest England. Hydrology and Earth System Sciences 11(3): 11151126.
  • Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR. 2005. Constraining climate forecasting: the role of prior assumptions. Geophysical Research Letters 32(9): L09702, DOI: 10.1029/2004GL022241.
  • Frei C, Schär C. 2001. Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. Journal of Climate 14: 15681584.
  • Frei C, Schär C, Lüthi D, Davies HC. 1998. Heavy precipitation processes in a warmer climate. Geophysical Research Letters 25(9): 14311434.
  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL. 2006. Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. Journal of Geophysical Research-Atmospheres 111: D06105, DOI: 10.1029/2005JD005965.
  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL. 2003. Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. Journal of Geophysical Research 108(D3): 4124, DOI: 10.1029/2002JD002287.
  • Furrer R, Sain SR, Nychka D, Meehl GA. 2007. Multivariate bayesian analysis of atmosphere-ocean general circulation models. Environmental and Ecological Statistics (in press).
  • Gangopadhyay S, Clark M, Rajagopalan B. 2005. Statistical downscaling using K-nearest neighbours. Water Resources Research 41: W02024, DOI: 10.1029/2004WR003444.
  • Georgakakos KP, Bae DH, Jeong CS. 2005. Utility of ten-day climate model ensemble simulations for water resources applications in Korean watersheds. Water Resources Management 19: 849872.
  • Giorgi F, Francisco R. 2000. Evaluating uncertainties in the prediction of regional climate change. Geophysical Research Letters 27: 12951298.
  • Giorgi F, Hewitson BC. 2001. Regional climate information—evaluation and projections. In Climate Change 2001: The Scientific Basis. C, HoughtonJT, DingY, GriggsDJ, NoguerM, van der LindenPJ, DiaX, MaskellK, JohnsonCA (eds). Cambridge University Press: Cambridge.
  • Giorgi F, Mearns LO. 2002. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. Journal of Climate 15: 11411158.
  • Giorgi F, Mearns LO. 2003. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical Research Letters 30(12): 1629, DOI: 10.1029/2003GL017130.
  • Goodess CM, Palutikof J. 1998. Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. International Journal of Climatology 18: 10511083.
  • Goodess CM, Jones PD. 2002. Links between circulation and changes in the characteristics of Iberian rainfall. International Journal of Climatology 22: 15931615.
  • Goodess CM, Anagnostopoulou C, Bárdossy A, Frei C, Harpham C, Haylock MR, Hundecha Y, Maheras P, Ribalaygua J, Schmidli J, Schmith T, Tolika K, Tomozeiu R, Wilby RL. 2007. An intercomparison of statistical downscaling methods for Europe and European regions—assessing their performance with respect to extreme temperature and precipitation events. Climatic Change (in press).
  • Graham LP, Andréasson J, Carlsson B. 2007a. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods - A case study on the Lule River basin. Climatic Change 81(Supplement): 293307.
  • Graham LP, Hagemann S, Jaun S, Beniston M. 2007b. On interpreting hydrological change from regional climate models. Climatic Change 81(Supplement): 97122.
  • Grantz K, Rajagopalan B, Clark M, Zagona E. 2005. A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resources Research 41: W10410, DOI: 10.1029/2004WR003467.
  • Greene AM, Goddard L, Lall U. 2006. Probabilistic multi-model regional temperature change projections. Journal of Climate 19: 43264343.
  • Grotch SL, MacCracken MC. 1991. The use of general circulation models to predict regional climatic change. Journal of Climate 4: 286303.
  • Hagemann S, Machenhauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL. 2004. Evaluation of water and energy budgets in regional climate models applied over Europe. Climate Dynamics 23: 547567.
  • Hanssen-Bauer I, Førland EJ. 1998. Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Climate Research 10: 143153.
  • Hanssen-Bauer I, Førland EJ, Haugen JE, Tveito OE. 2003. Temperature and precipitation scenarios for Norway: comparison of results from dynamical and empirical downscaling. Climate Research 25: 1527.
  • Hanssen-Bauer I, Achberger C, Benestad RE, Chen D, Forland EJ. 2005. Statistical downscaling of climate scenarios over Scandinavia. Climate Research 29: 255268.
  • Harpham C, Wilby RL. 2005. Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology 312: 121.
  • Harrold TI, Jones RN. 2003. Downscaling GCM rainfall: a refinement of the perturbation method. In MODSIM 2003 International Congress on Modelling and Simulation, Townsville, Australia, 14–17 July 2003.
  • Hay LE, Clark MP. 2003. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. Journal of Hydrology 282: 5675.
  • Hayhoe HN. 2000. Improvements of stochastic weather data generators for diverse climates. Climate Research 14: 7587.
  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM. 2006. Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology 26: 13971415.
  • Hellström C, Chen D. 2003. Statistical downscaling based on dynamically downscaled predictors: application to monthly precipitation in Sweden. Advances in Atmospheric Sciences 20: 951958.
  • Hellström C, Chen D, Achberger C, Räisänen J. 2001. Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Climate Research 19: 4555.
  • Hewitson BC, Crane RG. 1996. Climate downscaling: techniques and application. Climate Research 7: 8595.
  • Hewitson BC, Crane RG. 2006. Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. International Journal of Climatology 26: 13151337.
  • Hingray B, Mezghani A, Buishand TA. 2007a. Development of probability distributions for regional climate change from uncertain global-mean warming and an uncertain scaling relationship. Hydrology and Earth System Sciences 11(3): 10971114.
  • Hingray B, Mouhous N, Mezghani A, Bogner K, Schaefli B, Musy A. 2007b. Accounting for global-mean warming and scaling uncertainties in climate change impact studies: application to a regulated lake system. Hydrology and Earth System Sciences 11(3): 12071226.
  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K. 1996. Climate Change 1995: The Science of Climate Change. The Second Assessment Report of the IPCC: Contribution of Working Group I. Cambridge University Press: Cambridge.
  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S. 2002. Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia: Norwich; 120.
  • Hunt JCR. 2005. Inland and coastal flooding: developments in prediction and prevention. Philosophical Transactions of the Royal Society—Series A 363: 14751491.
  • Huth R. 1997. Potential of continental-scale circulation for the determination of local daily surface variables. Theoretical and Applied Climatology 56: 165186.
  • Huth R. 1999. Statistical downscaling in central Europe: evaluation of methods and potential predictors. Climate Research 13: 91101.
  • Huth R. 2002. Statistical downscaling of daily temperature in Central Europe. Journal of Climate 15: 17311742.
  • Huth R. 2005. Downscaling of humidity variables: a search for suitable predictors and predictands. International Journal of Climatology 25: 243250.
  • Huth R, Kyselý J. 2000. Constructing site-specific climate change scenarios on a monthly scale using statistical downscaling. Theoretical and Applied Climatology 66: 1327.
  • Huth R, Kyselý J, Dubrovský M. 2003. Simulation of surface air temperature by GCMs, statistical downscaling and weather generator: higher order statistical moments. Studia Geophysica et Geodaetica 47: 203216.
  • Jasper K, Calanca P, Gyalistras D, Fuhrer J. 2004. Differential impacts of climate change on the hydrology of two alpine river basins. Climate Research 26: 113129.
  • Jeong CS, Heo JH, Bae DH, Georgakakos KP. 2005. Utility of high-resolution climate model simulations for water resources prediction over the Korean Peninsula: a sensitivity study. Hydrological Sciences Journal 50: 139153.
  • Jones PD. 1988. Hemispheric surface air temperature variations: recent trends and an update to 1987. Journal of Climate 1: 654659.
  • Jones PD, Salmon M. 1995. Development and Integration of a Stochastic Weather Generator into a Crop Growth Model for European Agriculture. MARS Project, Final Report to Institute of Remote Sensing Applications, Agricultural Information Systems (ISPRA): UK; Contract No. 5631-93-12, ED ISP GB.
  • Jones RN. 2000a. Analysing the risk of climate change using an irrigation demand model. Climate Research 14: 89100.
  • Jones RN. 2000b. Managing uncertainty in climate change projections—issues for impact assessments. Climatic Change 45: 403419.
  • Karl TR, Wang WC, Schlesinger ME, Knight RW, Portman D. 1990. A method of relating general circulation model simulated climate to observed local climate. Part I: seasonal statistics. Journal of Climate 3: 10531079.
  • Kettle H, Thompson R. 2004. Statistical downscaling in European mountains: verification of reconstructed air temperature. Climate Research 26: 97112.
  • Khan MS, Coulibaly P, Dibike Y. 2006. Uncertainty analysis of statistical downscaling methods. Journal of Hydrology 319: 357382.
  • Kidson JW, Thompson CS. 1998. A comparison of statistical and model-based downscaling techniques for estimating local climate variations. Journal of Climate 11: 735753.
  • Kilsby CG, Cowpertwait PSP, O'Connell PE, Jones PD. 1998. Predicting rainfall statistics in England and Wales using atmospheric circulation variables. International Journal of Climatology 18: 523539.
  • Kilsby CG, Tellier SS, Fowler HJ, Howels TR. 2007. Hydrological impacts of climate change on the Tejo and Guadiana rivers. Hydrology and Earth System Sciences 11(3): 11751189.
  • Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL. 2007. A daily weather generator for use in climate change studies. Environmental Modelling and Software 22: 17051719.
  • Kleinn J, Frei C, Gurtz J, Lüthi D, Vidale PL, Schär C. 2005. Hydrologic simulations in the Rhine basin driven by a regional climate model. Journal of Geophysical Research 110: D04102, Doi:10.1029/2004JD005143.
  • Klein Tank AMG, Können GP. 2003. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. Journal of Climate 16: 36653680.
  • Knutti R, Stocker TF, Joos F, Plattner GK. 2002. Constraints on radiative forcing and future climate change from observations and climate models ensembles. Nature 416: 719723.
  • Knutti R, Stocker TF, Joos F, Plattner GK. 2003. Probabilistic climate change projections using neural networks. Climate Dynamics 21: 257272.
  • Knutti R, Joos F, Muller SA, Plattner GK, Stocker TF. 2005. Probabilistic climate change projections for CO2 stabilization profiles. Geophysical Research Letters 32(20): L20707. DOI: 10.1029/2005GL023294.
  • Kyselý J. 2002. Comparison of extremes in GCM-simulated, downscaled and observed central-European temperature series. Climate Research 20: 211222.
  • Kyselý J, Dubrovsky M. 2005. Simulation of extreme temperature events by a stochastic weather generator: Effects of interdiurnal and interannual variability reproduction. International Journal of Climatology 25: 251269.
  • Lall U, Sharma A. 1996. A nearest neighbor bootstrap for time series resampling. Water Resources Research 32: 679693.
  • Leander R, Buishand A, Aalders P, de Wit M. 2005. Estimation of extreme floods of the River Meuse using a stochastic weather generator and a rainfall-runoff model. Hydrological Sciences Journal 50: 10891103.
  • Leung RL, Mearns LO, Giorgi F, Wilby RL. 2003a. Regional climate research: Needs and opportunities. Bulletin of the American Meteorological Society 84: 8995.
  • Leung LR, Qian Y, Bian X, Hunt A. 2003b. Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part II: mesoscale ENSO anomalies. Journal of Climate 16: 19121928.
  • Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO. 2004. Mid-century ensemble regional climate change scenarios for the Western United States. Climatic Change 62: 75113.
  • Lopez A, Tebaldi C, New M, Stainforth D, Allen M, Kettleborough J. 2006. Two approaches to quantifying uncertainty in global temperature changes. Journal of Climate 19(19): 47854796.
  • Luo QY, Jones RN, Williams M, Bryan B, Bellotti W. 2005. Probabilistic distributions of regional climate change and their application in risk analysis of wheat production. Climate Research 29: 4152.
  • Mason SJ. 2004. Simulating Climate over Western North America Using Stochastic Weather Generators. Climatic Change 62: 155187.
  • Mastrandrea MD, Schneider SH. 2004. Integrated assessment of “dangerous” climate change. Science 304: 571575.
  • Matulla C. 2005. Regional, seasonal and predictor-optimized downscaling to provide groups of local scale scenarios in the complex structured terrain of Austria. Meteorologische Zeitschrift 14: 3147.
  • Mearns LO, the NARCCAP Team. 2006. Overview of the North American Regional Climate Change Assessment Program. In NOAA RISA-NCAR Meeting, Tucson, AZ, March 2006.
  • Mearns LO, Bogardi I, Giorgi F, Matayasovsky I, Palecki M. 1999. Comparison of climate change scenarios generated daily temperature and precipitation from regional climate model experiments and statistical downscaling. Journal of Geophysical Research 104: 66036621.
  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ. 2000. The coupled model intercomparison project (CMIP). Bulletin of the American Meteorological Society 81: 313318.
  • Mitchell TD. 2000. An investigation of the pattern scaling technique for describing future climates. PhD thesis, University of East Anglia, Norwich.
  • Mitchell TD. 2003. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Climatic Change 60: 217242.
  • Mitchell JFB, Johns TC, Eagles M, Ingram WJ, David RA. 1999. Towards the construction of climate change scenarios. Climatic Change 41: 547581.
  • Müller-Wohlfeil DI, Bürger G, Lahmer W. 2000. Response of a river catchment to climate change: application of expanded downscaling to northern Germany. Climatic Change 47: 6189.
  • Murphy J. 1999. An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of Climate 12: 22562284.
  • Murphy J. 2000. Predictions of climate change over Europe using statistical and dynamical downscaling techniques. International Journal of Climatology 20: 489501.
  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA. 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430: 768772.
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10: 282290.
  • Nicholls N, Gruza G, Jouzel J, Karl TR, Ogallo LA, Parker DE. 1996. Observed climate change and variability. In Climate Change 1995: The Science of Climate Change. The Second Assessment Report of the IPCC: Contribution of Working Group I, HoughtonJT, Meira FilhoLG, CallenderBA, HarrisN, KattenbergA, MaskellK (eds). Cambridge University Press: Cambridge; 133192.
  • Palmer TN, Räisänen J. 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415: 512.
  • Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M. 2005. Representing model uncertainty in weather and climate prediction. Annual Review of Earth and Planetary Sciences 33: 193193.
  • Palutikof JP, Goodess CM, Watkins SJ, Holt T. 2002. Generating rainfall and temperature scenarios at multiple sites: examples from the mediterranean. Journal of Climate 15: 35293548.
  • Payne JT, Wood AW, Hamlet AF, Palmer RN, Lettenmaier DP. 2004. Mitigating the effects of climate change on the water resources of the Columbia river basin. Climatic Change 62: 233256.
  • Penlap EK, Matulla C, von Storch H, Kamga FM. 2004. Downscaling of GCM scenarios to assess precipitation changes in the little rainy season (March-June) in Cameroon. Climate Research 26: 8596.
  • Pilling CG, Jones JAA. 2002. The impact of future climate change on seasonal discharge, hydrological processes and extreme flows in the Upper Wye experimental catchment, mid-Wales. Hydrological Processes 16: 12011213.
  • Prudhomme C, Reynard N, Crooks S. 2002. Downscaling of global climate models for flood frequency analysis: Where are we now?. Hydrological Processes 16: 11371150.
  • Prudhomme C, Jakob D, Svensson C. 2003. Uncertainty and climate change impact on the flood regime of small UK catchments. Journal of Hydrology 277: 123.
  • Qian B, Hayhoe H, Gameda S. 2005. Evaluation of the stochastic weather generators LARS-WG and AAFC-WG for climate change impact studies. Climate Research 29: 321.
  • Racsko P, Szeidl L, Semenov M. 1991. A serial approach to local stochastic weather models. Ecological Modelling 57: 2741.
  • Räisänen J, Palmer TN. 2001. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. Journal of Climate 14: 32123226.
  • Räisänen J, Ruokolainen L. 2006. Probabilistic forecasts of near-term climate change based on a resampling ensemble technique. Tellus Series A-Dynamic Meteorology and Oceanography 58: 461472.
  • Rowell DP. 2006. A demonstration of the uncertainty in projections of UK climate change resulting from regional model formulation. Climatic Change 79(3–4): 243257.
  • Salathé EP. 2003. Comparison of various precipitation downscaling methods for the simulation of streamflow in a rainshadow river basin. International Journal of Climatology 23: 887901.
  • Salathé EP. 2005. Downscaling simulations of future global climate with application to hydrologic modelling. International Journal of Climatology 25: 419436.
  • Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB. 1990. Developing climate scenarios from equilibrium GCM results. Rrp. No. 47. Max-Planck-Institut-fur-Meteorologie: Hamburg; 29.
  • Santer BD, Brueggemann W, Cusbasch U, Hasselmann K, Hoeck H, Maier-Reimer E, Mikolajewicz U. 1994. Signal-to-noise analysis of time-dependent greenhouse gas warming experiments. Climate Dynamics 9: 267285.
  • Schmidli J, Frei C, Vidale PL. 2006. Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology 26: 679689.
  • Schneider SH, Mastrandrea MD. 2005. Probabilistic assessment “dangerous” climate change and emissions pathways. Proceedings of the National Academy of Science 102: 1572815735.
  • Schoof JT, Pryor SC. 2001. Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. International Journal of Climatology 21: 773790.
  • Schubert S. 1998. Downscaling local extreme temperature changes in south-eastern Australia from the CSIRO Mark2 GCM. International Journal of Climatology 18: 14191438.
  • Schubert S, Henderson-Sellers A. 1997. A statistical model to downscale local daily temperature extremes from synoptic-scale atmospheric circulation patterns in the Australian region. Climate Dynamics 13: 223234.
  • Semenov MA, Brooks RJ, Barrow EM, Richardson CW. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research 10: 95107.
  • Slonosky VC, Jones PD, Davies TD. 2001. Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. International Journal of Climatology 21: 6375.
  • Stainforth D, Kettleborough J, Allen M, Collins M, Heaps A, Murphy J. 2002. Distributed computing for public-interest climate modeling research. Computing in Science & Engineering 4: 8289.
  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433: 403406.
  • Stott PA. 2003. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters 30(14): 1728, DOI: 10.1029/2003GL017324.
  • Stott PA, Kettleborough JA. 2002. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416: 723726.
  • Stott PA, Kettleborough JA, Allen MR. 2006. Uncertainty in continental-scale temperature predictions. Geophysical Research Letters 33: L02708, DOI: 10.1029/2005GL024423.
  • Tatli H, Dalfes HN, Mentes SS. 2004. A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology 24: 161180.
  • Tebaldi C, Nychka D, Mearns LO. 2004a. From global mean responses to regional signals of climate change: simple pattern scaling, its limitations (or lack of) and the uncertainty in its results. In Proceedings of the 18th Conference on Probability and Statistics in the Atmospheric Sciences, AMS Annual Meeting, Seattle, WA.
  • Tebaldi C, Mearns LO, Nychka D, Smith RL. 2004b. Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophysical Research Letters 31: L24213, DOI: 10.1029/2004GL021276.
  • Tebaldi C, Smith RL, Nychka D, Mearns LO. 2005. Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. Journal of Climate 18: 15241540.
  • Todini E. 1996. The ARNO rainfall-runoff model. Journal of Hydrology 175: 339382.
  • Trinka M, Dubrovsky M, Semeradova D, Zalud Z. 2005. Projections of uncertainties in climate change scenarios into projected winter wheat yields. Theoretical and Applied Climatology 77: 229249.
  • van Rheenen NT, Wood AW, Palmer RN, Lettenmaier DP. 2004. Potential implications of PCM climate change scenarios for Sacramento—San Joaquin river basin hydrology and water resources. Climatic Change 62: 257281.
  • von Storch H. 1999. On the Use of “Inflation” in Statistical Downscaling. Journal of Climate 12: 35053506.
  • von Storch H, Zwiers F. 1999. Statistical Analysis in Climate Research. Cambridge University Press: Cambridge.
  • von Storch H, Zorita E, Cubasch U. 1993. Downscaling of global climate change estimates to regional scales: an application to Iberian Rainfall in wintertime. Journal of Climate 6: 11611171.
  • Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F. 2004. Regional climate modeling: progress, challenges, and prospects. Journal of the Meteorological Society of Japan 82: 15991628.
  • Watts M, Goodess CM, Jones PD. 2004. The CRU Daily Weather Generator, BETWIXT Technical Briefing Note 1, Version 2, February 2004.
  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu C. 2006. Daily precipitation-downscaling techniques in three Chinese regions. Water Resources Research 42: W11423, DOI: 10.1029/2005WR004573.
  • Widmann M, Schär C. 1997. A principal component and long-term trend analysis of daily precipitation in Switzerland. International Journal of Climatology 17: 13331356.
  • Widmann M, Bretherton CS. 2000. Validation of mesoscale precipitation in the NCEP Reanalysis using a new gridcell dataset for the Northwestern United States. Journal of Climate 13: 19361950.
  • Widmann M, Bretherton CS, Salathé EP. 2003. Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. Journal of Climate 16: 799816.
  • Wigley TML, Raper SCB. 2001. Interpretation of high projections for global-mean warming. Science 293: 451454.
  • Wigley TML, Jones PD, Briffa KR, Smith G. 1990. Obtaining subgrid scale information from coarse-resolution general circulation model output. Journal of Geophysical Research 95: 19431953.
  • Wilby RL. 1998. Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices. Climate Research 10: 163178.
  • Wilby RL. 2006. When and where might climate change be detectable in UK river flows? Geophysical Research Letters 33: L19407, DOI: 10.1029/2006GL027552.
  • Wilby RL, Wigley TML. 1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography 21: 530548.
  • Wilby RL, Wigley TML. 2000. Precipitation predictors for downscaling: observed and general circulation model relationships. International Journal of Climatology 20: 641661.
  • Wilby RL, Harris I. 2006. A framework for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK. Water Resources Research 42: W02419, DOI: 10.1029/2005WR004065.
  • Wilby RL, Hay LE, Leavesley GH. 1999. A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. Journal of Hydrology 225: 6791.
  • Wilby RL, Conway D, Jones PD. 2002a. Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrological Processes 16: 12151234.
  • Wilby RL, Dawson CW, Barrow EM. 2002b. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software 17(2): 145157.
  • Wilby RL, Tomlinson OJ, Dawson CW. 2003. Multi-site simulation of precipitation by conditional resampling. Climate Research 23: 183194.
  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods, Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27.
  • Wilby RL, Whitehead PG, Wade AJ, Butterfield D, Davis RJ, Watts G. 2006. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. Journal of Hydrology 330: 204220.
  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS. 1998. Statistical downscaling of general circulation model output: a comparison of methods. Water Resources Research 34: 29953008.
  • Wilby RL, Hay LE, Gutowski WJJ, Arritt RW, Takle ES, Pan Z, Leavesley GH, Clark MP. 2000. Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters 27: 11991202.
  • Wilks DS. 1992. Adapting stochastic weather generation algorithms for climate change studies. Climatic Change 22: 6784.
  • Wilks DS, Wilby RL. 1999. The weather generation game: a review of stochastic weather models. Progress in Physical Geography 23: 329357.
  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62: 189216.
  • Xu CY. 1999. From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Progress in Physical Geography 23(2): 229249.
  • Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K. 2003. A technique for generating regional climate scenarios using a nearest-neighbour algorithm. Water Resources Research 39: 1199, DOI: 10.1029/2002WR001769.
  • Zhu C, Pierce DW, Barnett TP, Wood AW, Lettenmaier DP. 2004. Evaluation of hydrologically relevant PCM climate variables and large-scale variability over the continental U.S. Climatic Change 62: 4574.
  • Zorita E, von Storch H. 1997. A survey of statistical downscaling techniques. GKSS report 97/E/20, GKSS Research Center: Geesthacht.
  • Zorita E, von Storch H. 1999. The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. Journal of Climate 12: 24742489.