SEARCH

SEARCH BY CITATION

Keywords:

  • Indian Ocean Dipole/Zonal Mode;
  • El Niño-Southern Oscillation;
  • southern Africa;
  • droughts;
  • drought prediction;
  • seasonal rainfall

Abstract

A comparative study of the impact of the anomalous positive Indian Ocean SST gradient, referred to as the Indian Ocean Dipole/Zonal Mode (IODZM), and El Niño-Southern Oscillation (ENSO) on Zimbabwe seasonal rainfall variability for the period 1940–1999, is documented. Composite techniques together with simple and partial correlation analyses are employed to segregate the unique association related to IODZM/ENSO with respect to the Zimbabwe seasonal rainfall.

The analysis reveals that the IODZM impact on the country's summer rainfall is overwhelming as compared to that of ENSO when the two are in competition. The IODZM influence remains high (significant above 99% confidence level), even after the influence of ENSO has been removed, while that of ENSO collapses to insignificance (even at 90% confidence level) when the IODZM contribution is eliminated. The relationship between ENSO and Zimbabwe seasonal rainfall seems to be sustained through El Niño occurring in the presence of positive IODZM events. However, when the co-occurring positive IODZM and El Niño events are removed from the analysis, it is apparently clear that ENSO has little to do with the country's rainfall variability. On the other hand, positive IODZM is mostly associated with the rainfall deficits, whether or not it co-occurs with El Niño. However, the co-occurrence of the two events does not necessarily suggest that El Niño influences droughts through the positive IODZM events. The El Niño event components during co-occurrence seem to be unrelated (at least linearly) to the droughts, while the positive IODZM events display a relatively strong relationship that is significant above the 95% confidence level. It thus becomes important to extend the study of this nature to cover the whole of southern Africa, so that the extent of the impact of the phenomena can be realized over the whole region. Copyright © 2008 Royal Meteorological Society