SEARCH

SEARCH BY CITATION

References

  • Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN. 2008. Downscaling precipitation to River Basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology 28: 401420, DOI: 10.1002/joc.1529.
  • Benestad RE. 2001. A comparison between two empirical downscaling strategies. International Journal of Climatology 21: 16451668.
  • Bergant K, Kajfez-Bogataj L, Trdan S. 2006. Uncertainties in modelling of climate change impact in future: An example of onion thrips (Thrips Tabaci indeman) in Slovenia. Ecological Modelling 194: 244255.
  • Carter TR, La Rovere EL, Jones RN, Leemans R, Mearns LO, Nakicenovic N, Pittock AB, Semenov SM, Skea J. 2001. Developing and applying scenarios. Climate Change 2001: Impacts Adaptation and Vulnerability. Cambridge University Press: Cambridge.
  • Cavazos T, Hewitson BC. 2005. Performance of NCEP variables in statistical downscaling of daily precipitation. Climate Research 28: 95107.
  • Chen D, Chen Y. 2003. Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. Global and Planetary Change 37: 315325.
  • Collinson NH, Sparks TH. 2004. Nature's changing seasons. 2003 results from the UK Phenology Network. British Wildlife 15: 245250.
  • Croxton PJ, Huber K, Collinson N, Sparks TH. 2006. How well do the central England temperature and the England and Wales precipitation series represent the climate of the UK? International Journal of Climatology 26: 22872292, DOI: 10.1002/joc.1378.
  • Dahm CN, Cleverly JR, Coonrod JA, Thibault JR, McDonennell DE, Gilroy DJ. 2002. Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology 47(4): 831.
  • Dibike YB, Coulibaly P. 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology 307: 145163.
  • Dibike YB, Coulibaly P. 2006. Temporal neural networks for downscaling climate variability and extremes. Neural Networks 19(2): 135144.
  • Doty B, Kinter JL III. 1993. The Grid Analysis and Display System (GrADS): a desktop tool for earth science visualization. In American Geophysical Union 1993 Fall Meeting, San Fransico, 6–10 December.
  • Droogers P, Aerts J. 2005. Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins. Physics and Chemistry of the Earth 30: 339346.
  • Gestel TV, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, Moor BD, Vandewalle J. 2004. Benchmarking least squares support vector machine classifiers. Machine Learning 54(1): 532.
  • Gupta RS. 1989. Hydrology and Hydraulic Systems. Waveland Press: Illinois, USA.
  • Haupt RL, Haupt SE. 2004. Practical Genetic Algorithm. John Wiley and Sons: New Jersey, USA.
  • Hewitson BC, Crane RG. 1996. Climate downscaling: techniques and application. Climate Research 7: 8595.
  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press: Cambridge, New York.
  • Jessie CR, Antonio RM, Stahis SP. 1996. Climate Variability, Climate Change and Social Vulnerability in the Semi-arid Tropics. Cambridge University Press: Cambridge.
  • Johnson MS, Coon WF, Mehta VK, Steenhuis TS, Brooks ES, Boll J. 2003. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. Journal of Hydrology 284: 5776, DOI:10.1016/j.jhydrol.2003.07.005.
  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3): 437471.
  • Kendall MG. 1951. Regression structure and functional relationship Part I. Biometrika 38: 1125.
  • Linz H, Shiklomanov I, Mostefakara K. 1990. Chapter 4 Hydrology and water Likely impact of climate change IPCC WGII report WMO/UNEP Geneva.
  • Marshall SJ, Sharp MJ, Burgess DO, Anslow FS. 2007. Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere island, Canada: implications for regional downscaling of temperature. International Journal of Climatology 27(3): 385398, DOI: 10.1002/joc.1396.
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models. Part I—a discussion of principles. Journal of Hydrology 10: 282290.
  • Pearson K. 1896. Mathematical contributions to the theory of evolution III regression heredity and panmixia. Philosophical Transactions of the Royal Society of London Series 187: 253318.
  • Pitman AJ. 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology 23: 479510, DOI: 10.1002/joc.893.
  • Roderick ML, Farquhar GD. 2005. Changes in New Zealand pan evaporation since the 1970s. International Journal of Climatology 25: 20312039, DOI: 10.1002/joc.1262.
  • Rosenberg NJ, McKenney MS, Martin P. 1989. Evapotranspiration in a greenhouse-warmed world: a review and a simulation. Agricultural and Forest Meteorology 47: 303320.
  • Schoof JT, Pryor SC, Robeson SM. 2007. Downscaling daily maximum and minimum temperatures in the midwestern USA: a hybrid empirical approach. International Journal of Climatology 27(4): 439454, DOI: 10.1002/joc.1412.
  • Smola AJ, Scholkopf B, Muller KR. 1998. The connection between regularization operators and support vector kernels. Neural Networks 11(4): 637649.
  • Spearman CE. 1904a. ‘General intelligence’ objectively determined and measured. American Journal of Psychology 5: 201293.
  • Spearman CE. 1904b. Proof and measurement of association between two things. American Journal of Psychology 15: 72101.
  • Tatli H, Dalfes HN, Mentes S. 2005. Surface air temperature variability over Turkey and its connection to large-scale upper air circulation via multivariate techniques. International Journal of Climatology 25: 161180.
  • Timbal B, Dufour A, McAvaney A. 2003. An estimate of future climate change for western France using a statistical downscaling technique. Climate Dynamics 20: 807823, DOI 10.1007/s00382-002-0298-9.
  • Tripathi S, Srinivas VV, Nanjundiah RS. 2006. Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrology 330(3–4): 621640, DOI:10.1016/j.jhydrol.2006.04.030.
  • Wetterhall F, Halldin S, Xu CY. 2005. Statistical precipitation downscaling in central Sweden with the analogue method. Journal of Hydrology 306: 136174.
  • Wilby RL, Wigley TML. 2000. Precipitation predictors for downscaling: observed and General Circulation Model relationships. International Journal of Climatology 20(6): 641661.
  • Wilby RL, Dawson CW, Barrow EM. 2002. SDSM—a decision support tool for the assessment of climate change impacts. Environmental Modelling & Software 17: 147159.
  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. The guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change (IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA). (http://ipcc-ddc.cru.uea.ac.uk/guidelines/StatDown_Guide.pdf).
  • Zhang XC. 2005. Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology 135: 215229.
  • Zhang B, Govindaraju RS. 2000. Prediction of watershed runoff using bayesian concepts and modular neural network. Water Resources Research 36(3): 753762.