SEARCH

SEARCH BY CITATION

References

  • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration: guidelines for computing crop requirements, FAO Irrigation and Drainage Paper No. 56. FAO: Rome, Italy.
  • Ångstrom A. 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society 50(2): 1216.
  • Atkinson PM, Tatnall ARL. 1997. Introduction neural networks in remote sensing. International Journal of Remote Sensing 18: 699709.
  • Beyer HG, Costanzo C, Heinemann D. 1996. Modifications of the Heliosat procedure for irradiance estimates from satellite images. Solar Energy 56(3): 207212.
  • Bristow KL, Campbell GS. 1984. On the relationship between incoming solar radiation and daily minimum and maximum temperature. Agricultural and Forest Meteorology 31: 159166.
  • Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L. 1986. A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy 37(1): 3139.
  • Cengiz HS, Gregory JM, Seabaugh JL. 1981. Solar radiation prediction from other climatic variables. Transactions of the ASAE 24: 12691272.
  • Coulibaly P, Anctil F, Bobee B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230(3–4): 244257.
  • Czeplak G, Noia M, Ratto CF. 1991. An assessment of a statistical method to estimate solar irradiance at the earth's surface from geostationary satellite data. Renewable Energy 1(5–6): 737743.
  • Duffie JA, Beckman WA. 1980. Solar Engineering of Thermal Processes, Wiley: New York, 109.
  • Duffie JA, Beckman WA. 1991. Solar engineering of thermal processes. 2nd Ed., John Wiley & sons: New York, 994.
  • Elizondo D, Hoogenboom G, McClendon RW. 1994. Development of a neural network to predict daily solar radiation. Agricultural and Forest Meteorology 71(1–2): 115132.
  • Hagan MT, Menhaj M. 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5: 989993.
  • Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Muller R, Beyer HG. 2003. Solar energy assessment using remote sensing technologies. Remote Sensing of Environment 86: 423432.
  • Hansen JW. 1999. Stochastic daily solar irradiance for biological modeling applications. Agricultural and Forest Meteorology 94: 5363.
  • Hargreaves LG, Hargreaves GH, Riley JP. 1985. Irrigation water requirements for Senegal River Basin. Journal of Irrigation and Drainage Engineering 111(3): 265275.
  • Hornik K, Stinchcombe M, White H. 1989. Multilayer feed forward networks are universal approximators. Neural Network 2: 359366.
  • Hunt LA, Kuchar L, Swanton CJ. 1998. Estimation of solar radiation for use in crop modelling. Agricultural and Forest Meteorology 91: 293300.
  • Janjai S, Pankaew P, Laksanaboonsong J. 2009. A model for calculating hourly global solar radiation from satellite data in the tropics. Applied Energy 86: 14501457.
  • Liu DL, Scott BJ. 2001. Estimation of solar radiation in Australia from rainfall and temperature observations. Agricultural and Forest Meteorology 106: 4159.
  • Mahmood R, Hubbard KG. 2002. Effect of time of temperature and estimation of daily solar radiation for the Northern Great Plains, USA. Agronomy Journal 94: 723733.
  • Perez R, Ineichen P, Moore K, Kmiecik C, Chain C, George R, Vignola F. 2002. A new operational model for satellite-derived irradiances: description and validation. Solar Energy 73: 307317.
  • Prechelt L. 1998. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks 11: 761767.
  • Reddy KS, Ranjan M. 2003. Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Conversion and Management 44: 25192530.
  • Richardson CW, Wright DA. 1984. WGEN: A Model for generating Daily Weather Variables. USDA, Agricultural Research Service ARS-8, USA.
  • Rivington M, Matthews KB, Bellocchi G, Buchan K. 2006. Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data. Agricultural Systems 88: 451471.
  • Sarle WS. 1995. Stopped training and other remedies for overfitting. In: Proceedings of the 27th symposium on the interface of computing science statistics.
  • Soltani A, Meinke H, de Voil P. 2004. Assessing linear interpolation to generate daily radiation and temperature data for use in crop simulations. European Journal of Agronomy 21: 133148.
  • Thornton PE, Running SW. 1999. An improved algorithm for estimating incident solar radiation from measurements of temperature, humidity and precipitation. Agricultural and Forest Meteorology 93: 211228.
  • Trnka M, Zalud Z, Eitzinger J, Dubrovsky M. 2005. Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology 131: 5476.
  • Tover H, Baldasano JM. 2001. Solar radiation mapping from NOAA AVHRR data in Catalonia, Spain. Journal of Applied Meteorology 40: 18211834.
  • Zarzalejo LF, Polo J, Martín L, Ramírez L, Espinar B. 2009. A new statistical approach for deriving global solar radiation from satellite images. Solar Energy 83: 480484.