SEARCH

SEARCH BY CITATION

References

  • Ancelet S, Etienne M, Benoˆıt H, Parent E. 2010. Modelling spatial zero-inflated continuous data with an exponentially compound Poisson process. Environmental and Ecological Statistics 17(3): 347376.
  • Bates B, Charles S, Hughes J. 1998. Stochastic downscaling of numerical climate model simulations. Environmental Modelling & Software 13(3–4): 325331.
  • Berry DA. 1996. Statistics: A Bayesian Perspective, Duxbury Press: Belmont, CA.
  • Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences 5(1): 112.
  • Bolstad WM. 2004. Introduction to Bayesian Statistics, Wiley-Interscience: Hoboken, NJ.
  • Burton A, Kilsby C, Fowler H, Cowpertwait P, O'Connell P. 2008. RainSim: a spatial-temporal stochastic rainfall modelling system. Environmental Modelling & Software 23(12): 13561369.
  • Cannon A. 2008. Probabilistic multisite precipitation downscaling by an expanded Bernoulli-Gamma density network. Journal of Hydrometeorology 9(6): 12841300.
  • Chapman T. 1998. Stochastic modelling of daily rainfall: the impact of adjoining wet days on the distribution of rainfall amounts. Environmental Modelling & Software 13(3–4): 317324.
  • Cowpertwait P. 1994. A generalized point process model for rainfall. Proceedings: Mathematical and Physical Sciences 447(1929): 2337.
  • Cowpertwait P. 1995. A generalized spatial-temporal model of rainfall based on a clustered point process. Proceedings: Mathematical and Physical Sciences 450(1938): 163175.
  • Croley TE, Hartmann HC. 1985. Resolving Thiessen polygons. Journal of Hydrology 76(3–4): 363379.
  • Dunn PK. 2004. Occurrence and quantity of precipitation can be modelled simultaneously. International Journal of Climatology 24: 12311239.
  • Dunn PK, Smyth GK. 2005. Series evaluation of Tweedie exponential dispersion model densities. Statistics and Computing 15(4): 267280.
  • Dunn PK, Smyth GK. 2008. Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Statistics and Computing 18(1): 7386.
  • Efron B, Tibshirani RJ. 1993. An Introduction to the Bootstrap, Chapman & Hall/CRC: New York.
  • Elmore K. 2005. Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts. Weather and Forecasting 20: 789795.
  • Ferguson C, Husman AMD, Altavilla N, Deere D, Ashbolt N. 2003. Fate and transport of surface water pathogens in watersheds. Critical Reviews in Environmental Science and Technology 33(3): 299361.
  • Fernandes M, Schmidt A, Migon H. 2009. Modelling zero-inflated spatio-temporal processes. Statistical Modelling 9(1): 3.
  • Fowler H, Blenkinsop S, Tebaldi C. 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology 27(12): 15471578.
  • Friederichs P, Hense A. 2007. Statistical downscaling of extreme precipitation events using censored quantile regression. Monthly Weather Review 135(8): 23652378.
  • Furrer E, Katz R. 2007. Generalized linear modeling approach to stochastic weather generators. Climate Research 34(2): 129.
  • Gabriel K, Neumann J. 1962. A Markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society 88(375): 9095.
  • Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis, Chapman & Hall/CRC: Boca Raton, FL.
  • Gelman A, Hill J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press: New York, NY.
  • Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrse RD, Chu AK, Gouldin M, McGee CD, Gardiner NA, Jones BH, Svejkovsky J, Leipzig GV. 2001. Generation of Enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environmental Science & Technology 35(12): 24072416.
  • Green J. 1964. A model for rainfall occurrence. Journal of the Royal Statistical Society. Series B (Methodological) 26(2): 345353.
  • Gronewold AD, Borsuk M. 2009. A software tool for translating deterministic model results into probabilistic assessments of water quality standard compliance. Environmental Modelling & Software 24(10): 12571262.
  • Gronewold AD, Clites A, Hunter T, Stow C. 2011a. An appraisal of the Great Lakes advanced hydrologic prediction system. Journal of Great Lakes Research 37: 577583.
  • Gronewold AD, Myers L, Swall JL, Noble RT. 2011b. Addressing uncertainty in fecal indicator bacteria dark inactivation rates. Water Research 45: 652664.
  • Gronewold AD, Qian SS, Wolpert RL, Reckhow KH. 2009. Calibrating and validating bacterial water quality models: a Bayesian approach. Water Research 42: 26882698.
  • Gronewold AD, Wolpert RL. 2008. Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. Water Research 42(13): 33273334.
  • Hasan M, Dunn P. 2010. A simple Poisson-gamma model for modelling rainfall occurrence and amount simultaneously. Agricultural and Forest Meteorology 150(10): 13191330.
  • Hasan M, Dunn P. 2011a. Two Tweedie distributions that are near-optimal for modelling monthly rainfall in Australia. International Journal of Climatology 31(9): 13891397.
  • Hasan M, Dunn P. 2011b. Understanding the effect of climatology on monthly rainfall amounts in Australia using Tweedie GLMs. International Journal of Climatology. DOI: 10.1002/joc.2332.
  • Haylock M, Cawley G, Harpham C, Wilby R, Goodess C. 2006. Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology 26(10): 13971415.
  • Holman K, Gronewold AD, Notaro M, Zarrin A. 2012. Improving historical precipitation estimates over the Lake Superior basin. Geophysical Research Letters 39(3): L03405.
  • Hosseini R, Le N, Zidek J. 2011. Selecting a binary Markov model for a precipitation process. Environmental and Ecological Statistics. 18(4): 795820, DOI: 1–2610.1007/s10651-010-0169-1.
  • Ihaka R, Gentleman R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3): 299314.
  • Lofgren BM, Quinn FH, Clites AH, Assel RA, Eberhardt AJ, Luukkonen CL. 2002. Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. Journal of Great Lakes Research 28(4): 537554.
  • Milly PC, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ. 2008. Stationarity is dead: whither water management? Science 319(5863): 573574.
  • Onof C, Wheater H. 1993. Modelling of British rainfall using a random parameter Bartlett-Lewis rectangular pulse model. Journal of Hydrology 149(1–4): 6795.
  • Onof C, Wheater H. 1994. Improvements to the modelling of British rainfall using a modified random parameter Bartlett-Lewis rectangular pulse model. Journal of Hydrology 157(1–4): 177195.
  • Press SJ. 2003. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, Wiley-Interscience: Hoboken, NJ.
  • Quiroz R, Yarlequ C, Posadas A, Mares V, Immerzeel WW. 2011. Improving daily rainfall estimation from ndvi using a wavelet transform. Environmental Modelling & Software 26(2): 201209.
  • Raftery A, Gneiting T, Balabdaoui F, Polakowski M. 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133(5): 11551174.
  • Reckhow KH. 1999. Water quality prediction and probability network models. Canadian Journal of Fisheries and Aquatic Sciences 56(7): 11501158.
  • Reckhow KH, Chapra SC. 1983. Confirmation of water quality models. Ecological Modelling 20(2–3): 113133.
  • Ribatet M, Sauquet E, Grésillon J, Ouarda T. 2007. A regional Bayesian POT model for flood frequency analysis. Stochastic Environmental Research and Risk Assessment 21(4): 327339.
  • Stern R, Coe R. 1984. A model fitting analysis of daily rainfall data. Journal of the Royal Statistical Society. Series A (General) 147(1): 134.
  • Stow CA, Jolliff J, Jr. Doney DJM, Allen SC, Friedrichs JI, Rose MA, Wallhead KA. P 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems 76(1–2): 415.
  • Timbal B, Fernandez E, Li Z. 2009. Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environmental Modelling & Software 24(3): 341358.
  • Trefry C, Watkins D, Jr. Johnson D. 2005. Regional rainfall frequency analysis for the State of Michigan. Journal of Hydrologic Engineering 10: 437.
  • Velghe T, Troch P, De Troch F, Van de Velde J. 1994. Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resources Research 30(10): 28472858.
  • Wagener T, Wheater HS. 2006. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. Journal of Hydrology 320(1–2): 132154.
  • Wright E. 1933. On the coefficients of power series having essential singularities. Journal of the London Mathematical Society 8: 7179.