• temperature extremes;
  • Arctic Oscillation;
  • atmospheric circulation;
  • China


Cold and warm temperature extremes predominantly occurring in winter gained much more attention than mean temperatures. On the basis of daily maximum and minimum surface air temperature records at 303 meteorological stations in China, the spatial and temporal distributions of five indices for winter (DJF: December, subsequent January and February) temperature extremes are analysed during 1961–2003. For the majority of stations, the frequency of cold days/nights decreases by − 1.33/− 2.98 and warm days/nights increases by 0.92/2.35 d/decade, respectively. Cold days/nights are significantly negatively correlated with the Arctic Oscillation (AO) index, while warm days/nights are positively correlated with the AO. The diurnal temperature range (DTR) has a declining trend with rate of − 0.25 °C/decade and positive correlation with the AO index. Compared with other regions in China, stations in the northern China have larger trend magnitudes and stronger correlations with the AO index, and the AO can explain more than 50% of winter temperature extreme change in China. Compared with the annual basis, the winter temperature extremes have larger trend magnitudes, which reflect the rapid warming. During strongly positive AO index years, enhanced contrast tropospheric temperature (defined as the average of air temperature vertically integrated between 200 hPa and 1000 hPa based on the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis) between the north of China and the southern China weakens the East Asian winter monsoon which in turn reduces cold outbreaks in the northern and eastern China. The composites of large-scale atmospheric circulation are consistent with the asymmetrical changes of the geopotential height, zonal and meridional winds at high and mid latitudes at troposphere. Meanwhile, the linkage between the AO and solar activity also modulates the winter temperature extremes, while the mechanism needs to be investigated. Copyright © 2012 Royal Meteorological Society