• Alaska;
  • Aleutian low;
  • El Niño–Southern Oscillation;
  • Pacific Decadal Oscillation;
  • Pacific/North American pattern;
  • temperature anomalies;
  • temperature inversions


Wintertime (November–March) surface air temperatures at 14 stations throughout the state of Alaska are correlated with the Southern Oscillation Index and the Pacific Decadal Oscillation index, for the years 1954–2000. On the seasonal and monthly timescales, the principal results are: (i) During El Niño winters, temperatures are near normal in western Alaska but significantly warmer than normal for the eastern two-thirds of the state. (ii) La Niña winters produce significant below normal temperatures statewide. (iii) Temperature patterns produced during El Niño, La Niña, and neutral winters are modified by the concurrent state of the North Pacific sea-surface temperature anomalies, as indicated by the Pacific Decadal Oscillation index.

On the sub-monthly timescale, temperatures across Alaska are to the first order correlated with the alternating zonal to meridional Pacific/North American pattern. Analysis of daily winter temperatures at Fairbanks indicates that cold anomalies are more frequent and are longer in duration than warm anomalies, primarily due to radiational cooling of the boundary layer and the subsequent formation of deep temperature inversions. The development of strong inversions over the interior of Alaska limits the response of temperatures to changes in the synoptic-scale flow pattern. Warm anomalies in contrast to cold anomalies, are primarily a function of warm air advection, therefore temperatures during warm anomalies fluctuate in phase with changes in the synoptic-scale flow. Ultimately, air temperatures across Alaska are a function of: synoptic-scale forcings, radiative cooling of the boundary layer as well as local and regional effects such as downslope and drainage winds. Copyright © 2001 Royal Meteorological Society