SEARCH

SEARCH BY CITATION

Keywords:

  • Northern Great Plains;
  • snow water equivalent;
  • air mass;
  • synoptic climatology

Abstract

The Northern Great Plains is a region where variations in seasonal snow accumulation can have a dramatic affect on regional hydrology. In the past, one of the problems in studying snow hydrology has been obtaining information of sufficiently high temporal and spatial resolution on the water content of the snowpack. This project used a hybrid climatology of snow water equivalent (SWE) that incorporated both model and observed data. This climatology has a long time series (49 years) and a high spatial resolution (1° × 1°) sufficient for use in a climatic analysis.

The long and complete time series of SWE generated in this project allowed for a comprehensive analysis of the meteorological and climate forcing mechanisms that influence the amount of SWE. The five largest (high SWE) and five smallest SWE (low SWE) accumulations on 1 March were examined. High SWE years received greater snowfall and fewer accumulated melting degree days throughout the season. Large SWE accumulations at the end of the season, however, were not always associated with deep snowpacks early in the season. Also, all five high SWE years had above normal snowfall in February. Years with small or no SWE had below-average snowfall but greater than average accumulated melting degree days.

A synoptic analysis examined both atmospheric circulation and air mass frequencies to assess impacts on ablation and snowfall. A distinct difference in the frequency of different air mass during high SWE versus low SWE years was evident. High SWE years were characterized by substantially greater intrusions of the coldest and driest air mass type (dry polar). Low SWE years, in contrast, had a greater frequency of more moderate air masses (dry moderate and moist moderate). In years with above average SWE, negative departures in November–December–January–February composite 700 hPa field were evident across the continental USA and indicate a greater frequency of troughing across the study area. Low SWE years were characterized by a ridging pattern that reduced the likelihood of precipitation and may have aided in the intrusion of more moderate air masses. Copyright © 2003 Royal Meteorological Society