The cells responsible for skeletal growth are the chondrocytes of the cartilaginous growth plate. These cells differentiate through a series of maturational stages, establishing different zones in the growth plate. Among the major functions of these cells is the production of appropriate extracellular matrix, primarily composed of collagens and proteoglycans. To determine whether matrix synthesis varies with respect to maturational stage and in which cell populations different collagens are expressed, bovine growth plates were analyzed by in situ hybridization ot mRNA and by Northern blot hybridization. The most abundant collagen mRNA in the growth plate was type-II collagen. This mRNA was present at relatively low levels in the most immature cells of the growth plate but increased several-fold as cells entered the proliferative stage and remained high through subsequent phases of maturation. Type-XI collagen mRNA and mRNA for the cartilage-characteristic proteoglycan, aggrecan, were codistributed with the type-II collagen mRNA; however, both were present in much smaller quantities. Type-X procollagen mRNA was localized to chondrocytes late in their maturation and was expressed at levels similar to the expression of type-II collagen. In situ hybridization of serial sections revealed that growth plate chondrocytes in their more mature stages contain both type-II and type-X collagen mRNA. Type-I collagen mRNA was not observed in growth plate chondrocytes at any maturational stage; rather, it was localized to a morphologically distinct population of cells attached to calcifying cartilage septa in the region of vascular invasion. These data indicate that the genes for major matrix constituents synthesized by the growth plate in some cases are expressed differentially at different stages of cellular maturation and in other cases are expressed coordinately. The pattern of mRNA expression suggests possible mechanisms of gene regulation.