• 1
    Muir H. 1995. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17: 10391048.
  • 2
    Goldring MB. 2000. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43: 19161926.
  • 3
    Hughes CE, Caterson B, Fosang AJ, et al. 1995. Monoclonal antibodies that specifically recognize neoepitope sequences generated by ‘aggrecanase’ and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J 305(Pt 3): 799804.
  • 4
    Lark MW, Gordy JT, Weidner JR, et al. 1995. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanase” site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem 270: 25502556.
  • 5
    Lohmander LS, Ionescu M, Jugessur H, et al. 1999. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 42: 534544.
  • 6
    Bolton MC, Dudhia J, Bayliss MT. 1999. Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 337(Pt 1): 7782.
  • 7
    Bulstra SK, Buurman WA, Walenkamp GH, et al. 1989. Metabolic characteristics of in vitro cultured human chondrocytes in relation to the histopathologic grade of osteoarthritis. Clin Orthop 242: 294302.
  • 8
    Cs-Szabo G, Melching LI, Roughley PJ, et al. 1997. Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. Arthritis Rheum 40: 10371045.
  • 9
    Eyre DR, McDevitt CA, Billingham ME, et al. 1980. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. Biochem J 188: 823837.
  • 10
    Lippiello L, Hall D, Mankin HJ. 1977. Collagen synthesis in normal and osteoarthritic human cartilage. J Clin Invest 59: 593600.
  • 11
    Mankin HJ, Dorfman H, Lippiello L, et al. 1971. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg [Am] 53: 523537.
  • 12
    Gehrsitz A, McKenna LA, Soder S, et al. 2001. Isolation of RNA from small human articular cartilage specimens allows quantification of mRNA expression levels in local articular cartilage defects. J Orthop Res 19: 478481.
  • 13
    Martin I, Jakob M, Schafer D, et al. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9: 112118.
  • 14
    Outerbridge RE. 1961. The etiology of chondromalacia patellae. J Bone Joint Surg [Br] 43-B: 752757.
  • 15
    Robbins JR, Goldring MB. 1997. Methods in molecular medicine. Totowa, NJ: Humana Press.
  • 16
    Jakob M, Demarteau O, Schafer D, et al. 2003. Enzymatic digestion of adult human articular cartilage yields a small fraction of the total available cells. Connect Tissue Res 44: 173180.
  • 17
    Barre PE, Redini F, Boumediene K, et al. 2000. Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage 8: 3443.
  • 18
    Fan Z, Chubinskaya S, Rueger DC, et al. 2004. Regulation of anabolic and catabolic gene expression in normal and osteoarthritic adult human articular chondrocytes by osteogenic protein-1. Clin Exp Rheumatol 22: 103106.
  • 19
    Gebhard PM, Gehrsitz A, Bau B, et al. 2003. Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res 21: 96101.